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1. Historical background 
Since the turn of the century, the spatial econometrics literature has shifted its interest from 
the specification and estimation of econometric relationships based on cross-sectional data 
to spatial panels. Spatial panels refer to georeferenced point data over time of individuals, 
households, firms, houses or public services such as universities and hospitals, or they refer 
to spatial units such as zip codes, neighborhoods, municipalities, counties, regions, 
jurisdictions, states or countries. One well-known example of a spatial panel that has been 
widely used for illustration purposes in many empirical studies is Baltagi and Li’s (2004) 
dataset on cigarette demand in 46 American states over the period 1963-1992. In this study 
the dependent variable, real per capita sales of cigarettes measured in packs per person 
aged 14 years and older, is regressed on the average retail price of a pack of cigarettes and 
real per capita disposable income. The data is available at www.regroningen.nl/elhorst.  

The main advantage of working with spatial panels is that one can control for spatial and 
time specific effects. Spatial units of observation are likely to differ in their background 
variables, which are usually space-specific time-invariant variables that do affect the 
dependent variable, but which are difficult to measure or hard to obtain. One unit is located 
at the seaside, the other just at the border; one is a rural area located in the periphery of a 
country, the other an urban area located in the center; norms and values regarding labor, 
crime and religion in one spatial unit might differ substantially from those in another unit, to 
mention just a few examples. Failing to account for these effects, as in a cross-sectional 
study, increases the risk of obtaining biased estimation results. 

Similarly, the justification for time specific effects is that they control for all spatial-
invariant variables whose omission could bias the estimates in a typical time-series study. 
One time period is marked by an economic recession, the other by a boom; changes in 
legislation or government policy can significantly affect the functioning of an economy, such 
that observations before these changes might be significantly different from those after it. 
Reasons to control for spatial and time-specific effects when explaining cigarette demand 
are provided by Baltagi and Levin (1986, 1992). 

The main purpose of spatial econometric models is to test for the existence of spatial 
interaction effects, and related to that, spatial spillover effects. Spatial spillovers are a main 
interest in regional science, economic geography, and related fields. Many theories predict 
that changes to explanatory variables in a particular unit i impact the dependent variable not 
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only in unit i itself, but also in other units j (≠ i). The main motivation to consider spatial 
interaction effects and to test for spatial spillover effects in the spatial panel on cigarette 
demand is the so-called bootlegging effect: do consumers purchase cigarettes in nearby 
states, legally or illegally, if there is a price advantage? Improved accessibility to spatial 
panels and software developed to deal with spatial panel data models has increased the use 
of spatial econometric models over the past decade. For a better understanding it is first 
demonstrated in the next section how to derive spillover effects from a spatial econometric 
model and what the differences are between spatial interaction and spillover effects. Then 
different types of spatial econometric models and modeling selection strategies are 
presented, as well as their limitations. Finally, two promising approaches are set out that 
have recently been developed to overcome these limitations. 

 
2. Scientific fundamentals 
A spatial econometric model is a linear regression model extended to include spatial 
interaction effects. A standard linear regression model for panel data without spatial 
interaction effects takes the form 
 
𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡𝛽𝛽 + 𝜇𝜇 + 𝜉𝜉𝑡𝑡𝜄𝜄𝑁𝑁 + 𝜀𝜀𝑡𝑡, (1) 
 
where 𝑌𝑌𝑡𝑡 denotes an N×1 vector consisting of one observation on the dependent variable for 
every unit in the sample (i=1,…,N) at time t (t=1,…,T), 𝑋𝑋𝑡𝑡 denotes an N×K matrix of 
exogenous explanatory variables at time t associated with the K×1 vector 𝛽𝛽, and 𝜀𝜀𝑡𝑡 =
(𝜀𝜀1𝑡𝑡, … , 𝜀𝜀𝑁𝑁𝑁𝑁)′ is a vector of disturbance terms, where 𝜀𝜀𝑖𝑖𝑖𝑖 are independently and identically 
distributed error terms for all i with zero mean and variance σ2. 𝜇𝜇 = (𝜇𝜇1, … , 𝜇𝜇𝑁𝑁)′ and 𝜉𝜉𝑡𝑡 
multiplied with 𝜄𝜄𝑁𝑁 denoting an N×1 vector of ones represent spatial and time specific effects, 
which are optional and may be treated as fixed effects or as random effects. In the fixed 
effects model, a dummy variable is introduced for each spatial unit and for each time period 
(except one to avoid perfect multicollinearity), while in the random effects model, μi and ξt 
are treated as random variables that are independently and identically distributed with zero 
mean and variance 𝜎𝜎𝜇𝜇2 and 𝜎𝜎𝜉𝜉

2, respectively. Furthermore, it is assumed that the random 
variables μi, ξt and εit are independent of each other.  
 
2.1 Interaction and spillover effects 
Three different types of spatial interaction effects may be considered. The first is an 
endogenous interaction effect, which measures whether the dependent variable of unit i 
depends on the dependent variables of other units j (j≠ i) and vice versa. This effect can be 
denoted by 𝑊𝑊𝑊𝑊𝑡𝑡, where the spatial weights matrix W is a positive N×N matrix that describes 
the structure of dependence between the units in the sample. The second are exogenous 
interaction effects in that the dependent variable of unit i depends on the explanatory 
variables of other units j (j ≠ i). This effect can be denoted by 𝑊𝑊𝑊𝑊𝑡𝑡. Note that if the number 
of explanatory variables is K, the maximum number of exogenous interaction effects is also 
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K. Finally, an interaction effect among the error terms might occur, denoted by 𝑊𝑊𝑊𝑊𝑡𝑡, 
indicating that units may behave similarly because they share the same unobserved 
characteristics or face similar unobserved environments. Summing up, a total of K+2 spatial 
interaction effects is possible. 

If all spatial interaction effects would be added to the linear regression model for 
panel data, which is rarely done for reasons to be explained in the next section, one obtains:  
 
𝑌𝑌𝑡𝑡 = 𝜌𝜌𝜌𝜌𝑌𝑌𝑡𝑡 + 𝑋𝑋𝑡𝑡𝛽𝛽 + 𝑊𝑊𝑋𝑋𝑡𝑡𝜃𝜃 + 𝜇𝜇 + 𝜉𝜉𝑡𝑡𝜄𝜄𝑁𝑁 + 𝑢𝑢𝑡𝑡 ,       𝑢𝑢𝑡𝑡 = 𝜆𝜆𝜆𝜆𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑡𝑡.  (2) 
 
The scalar parameters ρ and λ and the 𝐾𝐾 × 1 vector of parameters 𝜃𝜃 measure the strength 
of spatial dependence between the units. Whether spatial and time specific effects need to 
be included and be treated as fixed or random effects in spatial econometric models can 
easily be tested using likelihood ratio (LR) tests and the Hausman test. The LR test is based 
on minus two times the difference between the log-likelihood function values in the 
restricted and the unrestricted model: −2 × (log𝐿𝐿restricted − log𝐿𝐿unrestricted). The LR test of 
whether the spatial fixed effects are jointly insignificant and thus can be replaced by one single 
intercept, follows a chi-squared distribution with N-1 degrees of freedom. Similarly, the LR test 
of whether the time fixed effects are jointly insignificant, follows a chi-squared distribution with 
T-1 degrees of freedom. If these fixed effects appear to be jointly significant, the Hausman test 
can be used to investigate whether random effects can replace them. It tests whether the 
response parameters in the model when the spatial and time specific effects are treated as 
random are significantly different from those when the spatial and time specific effects are 
treated as fixed. If they are, the random effects model needs to be rejected in favor of the fixed 
effects model. The number of degrees of freedom is equal to the number of response 
parameters, which is K for the explanatory variables 𝑋𝑋𝑡𝑡 plus 1 for 𝑊𝑊𝑌𝑌𝑡𝑡 if included and K for 
𝑊𝑊𝑋𝑋𝑡𝑡 if included (see Elhorst, 2014a for further details). 

If model (2) is rewritten to its reduced form (3), 
  

𝑌𝑌𝑡𝑡 = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝑋𝑋𝑡𝑡𝛽𝛽 + 𝑊𝑊𝑋𝑋𝑡𝑡𝜃𝜃) + (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝜇𝜇 + 𝜉𝜉𝑡𝑡𝜄𝜄𝑁𝑁 + (𝐼𝐼 − 𝜆𝜆𝜆𝜆)−1)𝜀𝜀𝑡𝑡),  (3) 
 
the matrix of partial derivatives of the expectation of 𝑌𝑌𝑡𝑡, 𝐸𝐸(𝑌𝑌𝑡𝑡), with respect to the kth 
explanatory variable of 𝑋𝑋𝑡𝑡 in unit 1 up to unit 𝑁𝑁 is 
 

�𝜕𝜕𝜕𝜕(𝑌𝑌𝑡𝑡)
𝜕𝜕𝑥𝑥1𝑘𝑘𝑘𝑘

…  𝜕𝜕𝜕𝜕(𝑌𝑌𝑡𝑡)
𝜕𝜕𝑥𝑥𝑁𝑁𝑁𝑁𝑁𝑁

� = (𝐼𝐼 − 𝜌𝜌𝜌𝜌)−1(𝛽𝛽𝑘𝑘 + 𝑊𝑊𝜃𝜃𝑘𝑘).  (4) 

 
whose diagonal elements represent direct effects and its off-diagonal elements indirect or 
spatial spillover effects and which are independent of t. Note that spatial and time specific 
effects, as well as the error term, drop out due to considering the expectation of 𝑌𝑌𝑡𝑡.  

To reduce the K different NxN matrices of direct and spillover effects to a manageable 
set of information, LeSage and Pace (2009) propose to report one direct effect measured by 
the average of the diagonal elements and one spillover effect measured by the average row 
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or column sums of the off-diagonal elements. In addition to this, one can distinguish global 
and local spillover effects. Global spillovers occur when a change in 𝑋𝑋𝑡𝑡 at any location will be 
transmitted to all other locations, also if two locations according to W are unconnected. This 
requires that 𝜌𝜌 ≠ 0. In contrast, local spillovers are those that occur at other locations only if 
according to W they are connected to each other. This requires that 𝜃𝜃 ≠ 0. Note that the 
choice between global and local spillovers is also related to the specification of W. A global 
spillover model with a spatial weights matrix that is sparse ‒a matrix in which only a limited 
number of elements is non-zero, such as a binary contiguity matrix‒ is more likely than with 
a dense matrix. Conversely, a local spillover model with a spatial weights matrix that is dense 
‒a matrix in which all off-diagonal elements are non-zero, such as an inverse distance 
matrix‒ is more likely than with a sparse matrix.  

Generally, it is harder to find empirical evidence in favor of significant spatial spillover 
effects than in favor of spatial interaction effects. This is because the former are composed 
of three parameters, among which two are spatial interaction effects. If already one of these 
three parameters happens to be insignificant, the spatial spillover effect also tends to 
become insignificant. For this reason, most empirical studies find only a fraction of their K 
explanatory variables to produce significant spatial spillover effects. This is not a weakness, 
but a validation that the hypothesis that a change in one of the determinants in one unit 
affects the dependent variable in another unit is strong. 
 
2.2 Key spatial econometric models and their limitations 
The full model with all possible spatial interaction effects, known as the general nesting 
spatial model (GNS), is seldom used in empirical research. There are two reasons for this 
(Elhorst, 2014a). First, a formal proof under which conditions the parameters of this model 
are identified is not available yet. Second, there is a problem of overfitting. Even if the 
parameters are not identified, they can be estimated, but have the tendency either to blow 
each other up or to become insignificant, as a result of which this model does not help to 
choose among simpler models with less spatial interaction effects. Another reason often 
mentioned to abandon this model is Manski’s (1993) reflection problem, but this is based on 
a misconception. Manski demonstrated the failure of identification if interaction effects are 
just the means of all units belonging to a group, that is, if they are obtained by setting all 
elements of the W matrix equal to 1/N. However, if it is assumed that units cannot interact 
with themselves, which is a reasonable assumption when working with spatial data, the 
diagonal elements of the W matrix will be equal to zero, as a result of which the reflection 
problem no longer holds (Bramoullé et al., 2009). 
 Simpler models containing one type or two types of spatial interaction effects are 
known under different designations and abbreviations: (i) the spatial autoregressive (SAR) 
model containing the endogenous interaction effect 𝑊𝑊𝑊𝑊𝑡𝑡, (ii) the spatial error model (SEM) 
containing the interaction effect (correlated effect) among the error terms 𝑊𝑊𝑊𝑊𝑡𝑡, (iii) the 
spatial lag of X model (SLX) containing the exogenous interaction effects 𝑊𝑊𝑊𝑊𝑡𝑡, (iv) the spatial 
autoregressive combined (SAC) model containing both 𝑊𝑊𝑊𝑊𝑡𝑡 and 𝑊𝑊𝑊𝑊𝑡𝑡, also known as the 
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SARAR or Cliff-Ord type spatial model, (v) the spatial Durbin (SDM) model containing both 
𝑊𝑊𝑊𝑊𝑡𝑡 and 𝑊𝑊𝑊𝑊𝑡𝑡, and (vi) the spatial Durbin error (SDEM) model containing both 𝑊𝑊𝑊𝑊𝑡𝑡 and 
𝑊𝑊𝑊𝑊𝑡𝑡. The parameters of these models have all been shown to be identified and to be free of 
overfitting. They can be estimated in Stata, R and Matlab. Sometimes it requires some 
additional programming in addition to standard routines, but in principle all software 
produce parameter estimates, direct and spillover effects, and significance levels. 

By far the biggest problem in empirical research is to choose between these different 
models and different specifications of W, especially if no reference is made to specific 
economic theories. Consequently, too many empirical studies follow a statistical approach 
driven by data-analytic considerations and only consider the SAR and/or SEM model with one 
type of spatial interaction effect. Moreover, many of these studies are further limited to one or 
a few pre-specified W matrices. Other empirical studies go a step further by considering the 
SAC and SDM models with two types of spatial interaction effects, but again based on one or a 
few pre-specified W matrices. If these studies already provide a well-founded background for 
certain spatial interaction effects, they often lack guidance of how the spatial weights matrix 
should be specified. Most often, spatial weights matrices are used whose appeal seems to lie 
in the frequency of their use. For these reasons many empirical studies can easily be criticized, 
such as in the special theme issue of the Journal of Regional Science (Volume 52, Issue 2); see 
Partridge et al. (2012) for an overview of the contributing papers. 

One limitation of the SAR, SAC and SDM models is that the spillover effects are global by 
construction (𝜌𝜌 ≠ 0), while global spillovers are often more difficult to justify than local 
spillovers (see Halleck Vega and Elhorst, 2015; and the references therein). In this respect, 
the SLX and SDEM models whose spillover effects are local (𝜌𝜌 = 0,𝜃𝜃 ≠ 0) are generally 
overlooked. Another limitation of the SAR and SAC models is that that the ratio between the 
spillover effect and direct effect is the same for every explanatory variable, which is unlikely 
to be the case in many empirical studies. One limitation of the SEM model is that the spillover 
effects are set to zero by construction (𝜌𝜌 = 0, 𝜃𝜃 = 0). The direct effect, i.e. the effect of a 
change of a particular explanatory variable in one unit on the dependent variable of that 
unit, is the only information provided.  

In view of this it should be clear that the way of thinking and the model selection 
strategies that are used in most empirical studies to determine the structure of spatial 
processes need revision. Two approaches have recently been developed that are promising. 
The first is developed by LeSage (2014) and based on Bayesian comparison methods, and the 
second by Halleck Vega and Elhorst (2015) and based on taking the SLX model as point of 
departure. These approaches are set out in the next section. 
 
3. Future directions 
3.1 The Bayesian comparison approach 
According to LeSage (2014), there are only two spatial econometric models that need to be 
considered: the spatial Durbin model (SDM) and the spatial Durbin error model (SDEM). The 
first model implies that spillover effects are global and the second that they are local. If it can 
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be argued on theoretical or substantive aspects of the problem that one type of spillover 
effects is more likely than the other, the corresponding model can be taken as point of 
departure. If this is not possible or if two theories circulate of which one implies the SDM and 
the other SDEM, these models are better tested against each other.  

To test whether the SAR or SEM model is more appropriate to describe the data than a 
model without any spatial interaction effects, researchers tended to use (robust) Lagrange 
Multiplier (LM) tests for interaction effects among the dependent variable or among the error 
terms. These tests, which have been developed by Anselin et al. (1996) in a cross-sectional 
setting and by Elhorst (2010) in a spatial panel data setting, have become very popular in 
empirical research. Unfortunately, they are not very helpful in finding the right model. The 
same applies to the emerging literature on the J-test (Kelejian and Piras, 2016; but note a 
strong point of this paper is that their J-test also allows for endogeneity of the regressors, see 
the next section). One reason is that these tests do not account for exogenous interaction 
effects. Consequently, it might be due to omitting 𝑊𝑊𝑊𝑊𝑡𝑡 variables that strong evidence is found 
in favor of the interaction effect among the dependent variable or among the error term. The 
second reason is that that these LM and J-tests suffer from low(er) power once exogenous 
interaction effects are also controlled for. This is because the log-likelihood function values of 
the SDM and SDEM models are generally much closer to each other than those of the SAR and 
SEM models, and because the spatial spillover effects are often comparable numerically, even 
though their interpretation (global vs. local) is completely different (Elhorst, 2014a). The 
explanation is that the point estimates of ρ in the SDM and λ in the SDEM provide too little 
statistical information to choose between these models. If the spatial interaction effect among 
the dependent variable is ignored while it should be in, the interaction effect among the error 
term may counterbalance this error, and vice versa.  

LeSage (2014) demonstrates that a Bayesian comparison approach considerably 
simplifies the task of selecting an appropriate model. This approach determines the Bayesian 
posterior model probabilities of SDM and SDEM given a particular spatial weights matrix, as 
well as the Bayesian posterior model probabilities of different W matrices given a particular 
model specification. Typically, these sets of probabilities take the form as illustrated in Table 1. 
 
Table 1. Comparison of model specifications and spatial weights matrices 
W Matrix Statistics         SDM                               SDEM 

Binary Contiguity 
log marginal likelihood 3616.03 3611.80 
model probabilities 0.9855 0.0145 

Inverse distance 
log marginal likelihood 3444.87 3455.44 
model probabilities 0.0000 1.0000 

K=6 nearest 
neighbors 

log marginal likelihood  3613.06 3613.60 
model probabilities 0.3676 0.6324 

Source: Firmino et al. (2014) 
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The log marginal likelihood of a model reported in this table is obtained by integrating out all 
parameters of the model over the entire parameter space on which they are defined. If the log 
marginal likelihood value of one model is higher than that of another model, the Bayesian 
posterior model probability is also higher. It should be stressed that the model parameters are 
not estimated and so cannot be reported when applying the Bayesian comparison approach. 
This is the main strength of this approach. Whereas the popular likelihood ratio, Wald and/or 
Lagrange multiplier statistics compare the performance of one model against another model 
based on specific parameter estimates within the parameter space, the Bayesian approach 
compares the performance of one model against another model, in this case SDM against 
SDEM, on their entire parameter space. Inferences drawn on the log marginal likelihood 
function values for the SDM and SDEM model are further justified because they have the same 
set of explanatory variables ([𝑋𝑋𝑡𝑡 𝑊𝑊𝑊𝑊𝑡𝑡]) and are based on the same uniform prior for ρ and λ. 
This prior takes the form 𝑝𝑝(𝜌𝜌) = 𝑝𝑝(𝜆𝜆) = 1 𝐷𝐷⁄ , where 𝐷𝐷 = 1 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚⁄ − 1 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚⁄  and 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 and  
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 represent respectively the largest and the smallest (negative) eigenvalue of the spatial 
weights matrix W. This prior requires no subjective information on the part of the practitioner 
as it relies on the parameter space (1 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚⁄ , 1 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚⁄ ) on which ρ and λ are defined, where 
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 = 1 if W is row-normalized or normalized by its largest eigenvalue. Full details regarding 
the choice of model can be found in LeSage (2014) and regarding the choice of W in LeSage and 
Pace (2009, chs. 5 and 6).  

The results reported in Table 1 show that in this particular case the first-order binary 
contiguity matrix in combination with the SDM model gives the best performance. If the spatial 
weights matrix would be specified as an inverse distance matrix, the SDEM model is a better 
choice. In other words, it is found that the global spillover model in combination with a sparse 
matrix outperforms the local spillover model in combination with a dense matrix. 
 
3.2 The SLX approach 
According to Halleck Vega and Elhorst (2015), the SLX model can be best taken as point of 
departure when an underlying theory is lacking. It is the simplest spatial econometric model 
producing flexible spatial spillover effects. In contrast to other spatial econometric models, the 
spatial weights matrix W in the SLX model can be parameterized. Moreover, standard 
instrumental variables (IV) approaches can be used to investigate whether (part of) the 𝑋𝑋𝑡𝑡 
variables and their spatially lagged values 𝑊𝑊𝑊𝑊𝑡𝑡 are endogenous. 
 From the overview in section 3 we learned that the SAR, SAC and SEM models are of 
limited use in empirical research due to initial restrictions on the spillover effects they can 
potentially produce. By contrast, the spillover effects produced by the SLX, SDM and SDEM 
models are flexible, as they can take any value. Since both SDM and SDEM are extensions of the 
SLX model, the latter is the simplest one of this family of models. 
 Suppose a researcher wants to use a simple parametric approach applied to the 
elements of an inverse distance matrix 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 𝑑𝑑𝛾𝛾⁄ , where γ is a parameter to be estimated, to 
obtain more information on the strength of interdependencies among the cross-sectional 
observations at each point in time t, rather than to impose a certain specification of the spatial 
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weights matrix in advance. A nonlinear, but straightforward estimation technique ‒the 
parameter vectors 𝛽𝛽 and 𝜃𝜃, given γ, and γ given 𝛽𝛽 and 𝜃𝜃 can be alternately estimated until 
convergence occurs‒ can then be used to estimate the parameters of the SLX model. If γ 
appears to be small, observations at distant locations have relatively more impact than if this 
distance decay parameter appears to be large. Next, the Bayesian comparison approach can be 
used to find out whether the SLX model needs to be extended to the SDM or SDEM model 
specification, keeping γ fixed. Unfortunately, due to computational problems, a numerical 
procedure to estimate γ also within these models is not available yet; see the perfect solution 
problem discussed in Halleck Vega and Elhorst (2015). Possible and useful extensions of 
parameterizing the spatial weights matrix in the SLX model using 𝑤𝑤𝑖𝑖𝑖𝑖 = 1 𝑑𝑑𝛾𝛾⁄  are one 𝛾𝛾𝑘𝑘 
(k=1,…,K) for every single exogenous interaction effect, more variables (V) determining the 
degree of interaction among spatial units, each with their own coefficient (δ), 𝑤𝑤𝑖𝑖𝑖𝑖 =

𝑉𝑉𝑖𝑖
𝛿𝛿𝑖𝑖𝑉𝑉𝑗𝑗

𝛿𝛿𝑗𝑗 𝑑𝑑𝑖𝑖𝑖𝑖
𝛾𝛾� , as in the popular gravity model, or alternatively, semi-parametric and non-

parametric approaches (McMillen, 2013). 
 A final advantage of the SLX model over other spatial econometric models is that 
nonspatial econometric techniques can be used to test for endogeneity among the explanatory 
variables [𝑋𝑋𝑡𝑡 𝑊𝑊𝑊𝑊𝑡𝑡]. It concerns the Hausman test for endogeneity in combination with tests for 
the validity of the instruments to assess whether they satisfy the relevance and exogeneity 
criterions. The attention for endogenous regressors (other than the endogenous interaction 
effects 𝑊𝑊𝑊𝑊𝑡𝑡) is important since researchers face uncertainty about the endogeneity not only of 
the explanatory variables 𝑋𝑋𝑡𝑡 themselves, but also of their exogenous interaction effects 𝑊𝑊𝑊𝑊𝑡𝑡. 
Halleck Vega and Elhorst (2015) find that the price of cigarettes observed in neighboring states 
may be used as an exogenous determinant of cigarette demand in the U.S., whereas the price 
of cigarettes observed in the own state may not. Apparently, consumption has feedback 
effects on the price in the own state, but if consumers decide to buy more cigarettes in 
neighboring states due to a price increase in their own state this has no significant feedback 
effects on prices there too. Today endogeneity of the regressors is getting more attention in 
the spatial econometrics literature (Drukker et al., 2013); Halleck and Vega (2015) is one of the 
first studies making a distinction between regular explanatory variables and interaction effects 
among these explanatory variables. 
 
4. Empirical applications 
Since there are numerous applications of spatial panel data models in the literature, we limit 
this overview to those studies that are based on Baltagi and Li’s (2004) spatial panel of cigarette 
demand. This dataset was used for the first time by Baltagi and Levin (1986, 1992), but then 
respectively over the periods 1963-1980 and 1963-1988. Table 2 provides an overview of the 
different studies and shows the progress that has been made over the years. Most studies now 
control for spatial and time period fixed effects. Elhorst (2014b) explicitly tests for these 
controls and finds that this model specification outperforms its counterparts without spatial 
and/or time fixed effects, as well as the random effects model. Many studies also include the 
dependent variable lagged in time so as to control for habit persistence. In that case one can 



9 
 

distinguish both short-term and long-term direct and spatial spillover effects; Elhorst (2013) and 
Debarsy et al. (2014) provide the mathematical formulas of these effects. Most studies also 
share the view that exogenous interaction effects should be included, but whether it is the SDM 
or the SDEM specification that best describes the data is still unclear. Halleck Vega and Elhorst 
(2015) argue that including endogenous interaction effects is difficult to justify, since it would 
mean that a change in price or income in a particular state potentially impacts consumption in 
all states, including states that according to W (such as California and Illinois) are unconnected. 
Finally, most studies adopt a row-normalized binary contiguity matrix. One exception is Debarsy 
et al. (2014) who also consider a row-normalized matrix based on state border miles in 
common between states. More importantly, Kelejian and Piras (2014) and Halleck and Vega 
(2015) are among the first going beyond an exogenous pre-specified spatial weights matrix with 
fixed weights. 

Table 2. Spatial panel data studies on cigarette demand 
Study Panel Dynamic Spatial W 
Baltagi and Levin (1986) TFE or TRE + SLX, price - 
Baltagi and Levin (1992) SFE or SRE + TFE + SLX, price - 
Baltagi and Li (2004) SFE or SRE - SEM BC 
Elhorst (2005) SFE + TFE + SDEM BC 
Elhorst (2013) SFE + TFE + SDM BC 
Debarsy et al. (2014) SRE + SDM BC, border lengths 
Kelejian and Piras (2014) SFE + TFE - SAR Endogenous 
Elhorst (2014b) SFE + TFE - SDM BC 
Halleck Vega and Elhorst 
(2015) 

SFE + TFE - All 
SLX 

BC  
parameterized IV 

Panel: SFE = spatial fixed effects, SRE = spatial random effects, TFE = time fixed effects, TRE = 
time random effects; Dynamic: + = Yt-1 included; Spatial: See main text for abbreviations, All 
= SAR, SEM, SLX, SAC, SDM, SDEM, GNS; W: BC = binary contiguity matrix, IV = inverse 
distance matrix. 
 
5. Conclusion 
Today a (spatial) econometric practitioner has the choice of many models. It should be 
investigated whether or not spatial and/or time specific effects should be accounted for and, if 
so, whether they should be treated as fixed or as random effects. It should be investigated 
which type of spatial interaction effects should be accounted for: (1) an endogenous spatial 
interaction effect, (2) exogenous spatial interaction effects, (3) an interaction effect among the 
error terms, or (4) a combination of these. Different specifications of the spatial weights matrix 
should be tested against each other. Finally, it should be tested whether one or more 
explanatory variables are endogenous. A systematic procedure that works under all 
circumstances does not exist, but recently two promising approaches have been developed 
that throw more light on many of these model choices. 
 
6. Further reading 
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Recommended introductory textbooks in spatial econometrics are Anselin (1988) and LeSage 
and Pace (2009), and in spatial panel data econometrics, Anselin et al. (2008) and Elhorst 
(2010, 2014a). Recommended journal articles or book chapters providing a good overview of 
the field are Anselin (2010), Lee and Yu (2010), and different contributions to the Handbook 
of Regional Science edited by Fischer and Nijkamp (2013). 
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