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1 Introduction 

Spatial econometrics is a subfield of econometrics dealing with spatial lags among geographical 

units. The early literature in this field started with contributions of Moran (1948), Whittle 

(1954), and Ord (1975), followed by the seminal contribution of Anselin (1988),1 and a series 

of textbooks by LeSage and Pace (2009), Elhorst (2014), Kelejian and Piras (2017), and 

Beenstock and Felsenstein (2019).  

According to Elhorst (2014), three generations of spatial econometric models could be 

distinguished about halfway through the decade 2010-2020. The first generation consists of 

models based on cross-sectional data. The second generation comprises non-dynamic models 

based on spatial panel data. These models might just pool time-series cross-sectional data, but 

more often they also control for fixed or random spatial and/or time-period specific effects. The 

third generation of spatial econometric models encompasses dynamic spatial panel data models. 

Today (read: 2021), a fourth generation of spatial econometric models has developed: the 

general nesting spatial (GNS) econometric model for spatial panels with common factors (CF). 

This model accounts for local spatial dependence by means of an endogenous spatial lag, 

exogenous spatial lags, and a spatial lag in the error term. It accounts for dynamic effects by 

means of the dependent variable lagged in time, and the dependent variable lagged in both space 

and time. Finally, it accounts for global cross-sectional dependence by means of cross-sectional 

averages or principal components with heterogeneous coefficients, which generalizes the 

traditional controls for time-invariant and spatial-invariant variables by unit-specific and time-

specific effects. With these properties it is the most general spatial econometric model currently 

available. The aim of this paper threefold. First, the full model is set out mathematically. 

Second, the rationale behind each term that is part of the model is explained. Third, potential 

objections or pitfalls of including certain terms are discussed.  

 According to Elhorst (2010), the year 2007 marks a sea change in the spatial 

econometricians’ way of thinking. Prior to 2007 they were interested mainly in models 

containing one spatial lag, while after 2007 the interest in models containing more than one 

spatial lag increased. For this reason he added the words “Raising the Bar” to the title of his 

paper. The interest for common factors and the distinction between weak and strong cross-

sectional dependence, which occurred about halfway through the decade 2010-2020, is another 

sea change in the spatial econometricians’ way of thinking, explaining the title of this paper. 

 

                                                 
1 See references in this book for a more comprehensive review, and Anselin (2010) for a recent update.  
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2  Model 

The general nesting spatial (GNS) econometric model for spatial panels with common factors 

(CF) reads as 

 

𝑌𝑡 = 𝜏𝑌𝑡−1 + 𝜌𝑊𝑌𝑡 + 𝜂𝑊𝑌𝑡−1 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + ∑ 𝛤𝑟
𝑇𝑓𝑟𝑡𝑟 + 𝑢𝑡,   𝑢𝑡 = 𝜆𝑊𝑢𝑡 + 𝜀𝑡 (1) 

 

where 𝑌𝑡 = (𝑦1𝑡, … , 𝑦𝑁𝑡)𝑇 denotes an N×1 vector consisting of one observation on the 

dependent variable 𝑦𝑖𝑡 for every unit i (i=1,…,N) in the sample at time t (t=1,…,T). 𝑌𝑡−1 and 

𝑊𝑌𝑡 represent, respectively, the temporal and spatial lag of 𝑌𝑡, and 𝑊𝑌𝑡−1 the spatiotemporal 

lag of 𝑌𝑡, while 𝜏, 𝜌, and 𝜂 are the response parameters of these variables, better known as, 

respectively, the serial, spatial and spatiotemporal autoregressive coefficients. The N×N matrix 

W is a nonnegative matrix of known constants describing the spatial arrangement of the units 

in the sample. Its diagonal elements are set to zero to prevent units from explaining themselves. 

𝑋𝑡 is an N×K matrix of explanatory variables and 𝑊𝑋𝑡 an N×K matrix of contemporeous spatial 

lags of these explanatory variables. The impacts of these variables are measured by, 

respectively, the K×1 vectors β and 𝜃. The N×1 vectors 𝑢𝑡 and 𝜀𝑡 denote the error terms of the 

model. It is assumed that 𝑢𝑡 follows a first-order spatial autoregressive process with spatial 

autocorrelation coefficient 𝜆, which may be labeled as a spatial lag in the error term, and that 

𝜀𝑡 = (𝜀1𝑡, … , 𝜀𝑁𝑡)𝑇 is a vector of disturbance terms, where 𝜀𝑖𝑡 are independently and identically 

distributed error terms for all i with zero mean and variance 𝜎2. Since the spatial econometric 

model in Equation (1) contains spatial lags in the dependent variable, in each of the explanatory 

variables, and in the error term, it is also known as a dynamic general nesting spatial model 

(Elhorst, 2014). The determinants of the model described so far capture potential local spatial 

dependence (weak cross-sectional dependence) among the observations. 

 The common factors 𝑓𝑟𝑡 (r=1,…,R) capturing potential global cross-sectional 

dependence can take three forms. First, if two factors are considered, 𝑓1𝑡 = (1, … ,1)𝑇 and 𝑓2𝑡 =

(𝜉1, … , 𝜉𝑇)𝑇, and the parameter restrictions 𝛤1
𝑇 = (𝑣1, … , 𝑣𝑁) and 𝛤2

𝑇 = (1, … ,1) are imposed, 

the model boils down to a dynamic GNS model with cross-sectional and time-period fixed 

effects. Formally, the cross-sectional fixed effects represent one common factor (𝑓1𝑡) which is 

constant over time but with heterogenous coefficients (𝛤1). The time-period fixed effects 

represent another common factor of length T (𝑓2𝑡) which changes over time but with 

homogenous coefficients (𝛤2). The total number of common factor parameters to be estimated 
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in this setting amounts to N+T-1, since one of the T time dummies should be left aside to avoid 

perfect multicollineairity with the cross-sectional fixed effects.  

 The second possibility is to maintain the cross-sectional fixed effects, but to replace the 

time dummies by time-specific cross-sectional averages of the dependent variable at times t and 

t-1, i.e., �̅�𝑡 = 1

𝑁
∑ 𝑦𝑖𝑡

𝑁
𝑖=1 , �̅�𝑡−1 = 1

𝑁
∑ 𝑦𝑖𝑡−1

𝑁
𝑖=1 , and/or the time-specific cross-sectional averages of 

the explanatory variables at time t, �̅�𝑘𝑡 = 1

𝑁
∑ 𝑥𝑖𝑘𝑡

𝑁
𝑖=1 , where k denotes the kth variable among the 

set of K explanatory variables. Furthermore, just as the cross-sectional fixed effects have 

heterogenous coefficients, one for each single unit in the sample and thus N in total, so does 

each cross-sectional average. This implies that if all cross-sectional averages are included, 2 for 

the dependent variable at times t and t-1, and K for the explanatory variables at time t, the total 

number of common factor coefficients to be estimated (including the cross-sectional fixed 

effects) increases to N+(2+K)N. Just as time-period fixed effects, these cross-sectional averages 

may be treated as exogenous explanatory variables based on the assumption that the 

contribution of each unit to the cross-sectional averages at a particular point in time goes to 

zero if N goes to infinity (Pesaran 2006, assumption 5 and remark 3). Elhorst (2021) provides 

a set of commands with which this model can be estimated in Stata. 

 The third possibility is to approach the unobservable common factors by one or more 

principal components. In that case the Γ parameters represent the factor loadings of the principal 

components. Shi and Lee (2017) develop a quasi maximum likelihood (QML) estimator for the 

this model. This estimator does not require any specification of the distribution function of the 

disturbance term, except that the error term should have zero mean and variance 𝜎2. This 

explains the term quasi. The coefficients estimates are corrected for the Nickell bias and the 

impact of this bias on the other coefficients in the equation. For this purpose, a Matlab routine 

called SFactors has been developed, which the first author made available at his web site 

www.w-shi.net. This routine is also made available at spatial-panels.com and extended to 

include the determination of the log-likelihood function value and 𝑅2 of the model. Since every 

principal component requires the estimation of 2N parameters, the total number of common 

factor parameters to be estimated in this setting amounts to 2NR.  

 

3 A spatial lag in the dependent variable: 𝑾𝒀𝒕 

A spatial lag in the dependent variable implies that 𝑦𝑖𝑡 observed in cross-sectional unit i is 

explained by 𝑦𝑗𝑡 in other cross-sectional units j, 𝑗 ≠ 𝑖, and vice versa. The units j which are 

included depend on the specification of the spatial weight matrix W. A linear regression model 

http://www.w-shi.net/
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that contains a spatial lag in the dependent variable only (WY) is known as a spatial 

autoregressive (SAR) model. It is one of the most widely used spatial econometric models to 

introduce new methods of estimation or spatial statistics. Two other popular spatial econometric 

models used for these purposes are the spatial error (SE) model, which includes a spatial lag in 

the error term (Wu), and the spatial autoregressive combined (SAC) model, which includes both 

types of spatial lags (WY and Wu). Leading examples are Ord (1975), who introduces the 

maximum likelihood (ML) estimator of the SAR and SE models; Anselin (1988, pp.82-86) and 

Kelejian and Prucha (1998, 1999), who introduce the instrumental variables (IV) and 

generalized method-of-moments (GMM) estimators of the SAR, SE and the SAC models; Lee 

(2004), who introduces the quasi maximum likelihood (QML) estimator of the SAR model and 

also discusses the regularity conditions that need to be imposed on the spatial weight matrix 

W;2 LeSage and Pace (2009, Ch.5), who set out the Bayesian Markow Chain Monte Carlo 

(MCMC) estimator of the SAR model;3 Bao and Ullah (2007), who investigate the finite sample 

properties of  the ML estimator of the SAR model; Ahrens and Bhattarchajee (2015), who 

exploit the Lasso estimator and mimics two-stage least squares (2SLS) to estimate the SAR 

model and the corresponding spatial weight matrix; Kyriacou et al. (2017), who introduce the 

Indirect Inference (II) estimator of the SAR model; and Smirnov (2021), who derives a closed-

form consistent estimator of the spatial autoregressive parameter in the SAR model and the 

spatial autocorrelation coefficient in the SE model.  

Despite the fact that so many different estimators of the SAR model have been 

developed, it should be stressed that this does not imply that the SAR model also makes sense 

from an economic-theoretical viewpoint. Many empirical studies justfy the inclusion of a spatial 

lag in the dependent variable based on the simple finding that its coefficient is significant. Two 

leading examples in this characterizing many empirical studies are the following. When running 

Moran’s I test on the dependent variable, the corresponding null hypothesis that this variable is 

not spatially correlated often needs to be rejected. The robust Lagrange multiplier (LM) tests 

developed by Anselin et al. (1996) to test for the SAR model (as well as the SE model) as an 

extension of a standard linear regression model without any spatial lags is also often provided 

as empirical evidence in favor of the SAR model. When estimating the SAR model 

subsequently, one can easily find empirical evidence in favor of a significant spatial 

autoregressive parameter 𝜌 of 𝑊𝑌 for several potential specifications of W. However, this 

                                                 
2 The regularity conditions in this paper generalize those in Kelejian and Prucha (1998, 1999). 
3 This book chapter is a substantial improvement of an earlier paper by LeSage (1997). 
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approach has severely been criticized in the spatial econometric literature. First of all, 

researchers apparently do not realize that Moran’s I test is unfocused and that the robust LM 

tests do not control for potential spatial lags in the explanatory variables. Theoretically, it is 

possible that a standard linear regression without any spatial lags is sufficient, even if the 

dependent variable according to Moran’s I test is spatially correlated, since the explanatory 

variables may also be spatially correlated and, moreover, in such a way that it fully covers the 

spatial correlation in the dependent variable. According to Pinkse and Slade (2010), this is also 

a primary criticism of standard spatial econometrics; researchers try to fit their preferred model 

(usually a SAR model) onto every empirical problem rather than having the nature of the 

empirical problem inform which particular model best answers the question. In addition, they 

criticize the SAR model for the laughable notion that the entire spatial dependence structure is 

reduced to one single unknown coefficient. Similarly, McMillen (2012) critiques the overuse 

of the SAR model (and the SE model) as a quick fix for nearly any model misspecification issue 

related to space. Corrado and Fingleton (2012) demonstrate by using a simple Monte Carlo 

simulation experiment that the coefficient estimate for the 𝑊𝑌 variable may be significant 

because it could be picking up the effect of omitted 𝑊𝑋 variables or nonlinearities in the 𝑋 

variables if they are erroneously specified as being linear. This makes the interpretation of a 

causal (spillover) effect difficult, i.e., to discern whether the significant coefficient of the 𝑊𝑌 

variable is due to omitted variables or due to a causal effect of 𝑊𝑌. Another important limitation 

of the SAR model, as demonstrated by Elhorst (2010), is that the ratio between the marginal 

impacts of changes to explanatory variables in one cross-sectional unit on the dependent 

variable values in other units (spillover effect) and in the own unit (direct effect) is independent 

of its coefficient 𝛽 and therefore the same for every explanatory variable, which is unlikely to 

hold in many applied settings. The appendix to this paper contains a detailed description of the 

direct and indirect (spatial spillover effects) that can be derived from the spatial econometric 

model in Equation (1). An issue related to this and that is gaining more attention in the empirical 

literature is that global spillovers are often difficult to justify. One speaks of global spillover 

effects if changes in the explanatory variables X in one unit j impact the dependent variable 

observed in another unit i, even if these two units are not connected to each according to the 

spatial weight matrix (𝑤𝑖𝑗 = 0). Halleck Vega and Elhorst (2015) show that these kind of 

spillovers can occur only if at least a spatial lag in the dependent variable is part of the model, 

while Pinkse and Slade (2010, p.115), as well as Arbia and Fingleton (2008), Gibbons and 

Overman (2012), Corrado and Fingleton (2012), Partridge et al. (2012), Lacombe and LeSage 



 7 

(2015), and Elhorst et al. (2020) argue that it is often difficult to form a reasonable argument to 

include a spatial lag in the dependent variable even if it is easily found to be statistically 

significant. For example, if teen smoking behavior is being analyzed then it would be sound to 

argue that an individual’s propensity to smoke is directly influenced by the smoking behavior 

of friends. However, if real per capita sales of cigarettes are analyzed at the aggregate level of 

geographical units, then it is difficult to justify that the average levels of consumption in 

different units affect one another. The resulting global spillovers would mean that a change in 

price or income in one particular unit potentially impacts consumption in all units, even if these 

units are unconnected. Other examples than this one, which is taken from Halleck Vega and 

Elhorst (2015), concern poverty rates (Partridge et al., 2012) and car use (Elhorst et al., 2020).  

The number of studies that do provide an economic-theoretical model underpinning of 

a spatial lag in the dependent variable is limited. According to Anselin (2006), the SAR model 

is generally conceptualized as representing the empirical counterpart to an equilibrium solution 

of strategic interaction or a spatial reaction function, 𝑦𝑖 = 𝑅(𝑦_𝑖, 𝑥𝑖), where 𝑦𝑖 stands for the 

level of decision variable 𝑦 of agent i, 𝑦_𝑖 reflects a function of the decision variables chosen 

by other agents, 𝑥𝑖 is a vector of exogenous characteristics of i, and R is a functional form to be 

specified. Xu and Lee (2019) show that if (i) N individuals maximize their utilities, (ii) 

individual’s i benefit is proportional to this action and depends on his own characteristics and 

those of others, 𝑦𝑖(𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗 + 𝑋𝑖
′𝛽 + 𝜀𝑖)𝑁

𝑗=1 , and (iii) individual’s i cost equal 1

2
𝑦𝑖

2, the utility 

function of individual i takes the form 𝑈𝑖(𝑦𝑖) =  𝑦𝑖(𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗 + 𝑋𝑖
′𝛽 + 𝜀𝑖) − 1

2
𝑦𝑖

2𝑁
𝑗=1 , and that 

his optimal action takes the form of a SAR model. In other words,SAR can be regarded as a 

model on the Nash equilibrium of a static complete information game with a linear-quadratic 

utility function. The time dimension is not part of this setting but can be added in a 

straightforward manner.  

 Pinkse et al. (2002) and LeSage et al. (2017) have used spatial econometric models to 

show that, when one petrol station decreases its price, geographically nearby service stations 

need to follow in order not to lose market share. The first of these two studies also provides an 

economic-theoretical model for this strategic behavior. In the literature on strategic interaction 

among local governments, a spatial lag in the dependent variable is theoretically consistent with 

the situation where taxation and expenditures on public services interact with taxation and 

expenditures on public services in nearby jurisdictions (Wildasin, 1988; Besley and Case, 1995; 

Brueckner, 2003, 2006). For more references more in this field see Allers and Elhorst (2011), 

who argue that many studies of fiscal policy interactions are based on single equation models 
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of either taxation or expenditures, without specifying the underlying social welfare function, 

without taking account of budget constraints and without allowing for cost differences between 

jurisdictions. By taking this into account, they derive an extended version of the linear 

expenditure system with policy interaction effects that correspond to a system of several SAR 

models. Hanson (2005) develops an augmented market-potential function derived from the 

Krugman model of economic geography, reflecting the impact of scale economies and transport 

costs, to explain wage curves. Behrens et al. (2012) derive a quantity-based structural gravity 

equation system in which both trade flows and error terms are cross-sectionally correlated. This 

system can be estimated using techniques borrowed from the spatial econometrics literature, in 

particular the literature on SAR models extended to include an error term with an autoregressive 

or an moving average spatial structure. One of the first studies explaining interregional trade 

flows incorporating the effect of spatial interactions is Keller and Shiue (2007). Blonigen et al 

(2007), who develops an economic-theoretical model of foreigh direct investments (FDI), 

shows that this model results in a linear regression model extended to include an endogenous 

spatial lag on FDI, measured by FDI into markets nearby the host country, and an exogenous 

market potential variable among the set of explanatory variables, measured by the size of 

markets nearby the FDI host country in terms of gross domestic product (GDP). The signs and 

significance levels of the coefficients of these two variables can be used to answer the question 

whether these outcomes are compatible with horizontal, vertical, export-platform or complex 

vertical FDI. 

Although this is just a selection of several economic-theoretical studies motivating the 

inclusion of spatial lag in the dependent variable, and there are certainly more of this type of 

studies, their number remains relatively limited. 

 

4 Temporal and spatiotemporal lags: 𝒀𝒕−𝟏 and 𝑾𝒀𝒕−𝟏 

The main reason to control for a temporal lag in the dependent variable, 𝑌𝑡−1, is habit 

persistence. It takes time to change behavior. A household may not change its consumption 

level and labor supply immediately in response to a change in prices or its income. Similarly, a 

firm may react with some delay to changes in costs and to changes in demand for its product. 

Moreover, time lags can arise from imperfect information. Economic agents require time to 

gather relevant information, and this delays the decision-making process. Institutional factors 

can also result in lags. Households may be contractually obliged to supply a certain level of 

labor hours, though other conditions would indicate a reduction or increase in labor supply. The 
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half-life of a change in one of the explanatory variables explaining the dependent variable, 𝑌𝑡, 

can be calculated as ℎ = ln (1

2
)/ln (𝜏). If, for example, 𝜏 = 0.8, then ℎ = 3.1, which implies that 

it takes more than three time periods before the impact on the dependent variable due to a 

change of one of the explanatory variables has been halved. Only if 𝜏 < 1

2
, the half-life is shorter 

than one time period. 

Korniotis (2010) interprets the coefficients of the temporal and spatiotemporal lags of 

the dependent variable, 𝑌𝑡−1 and 𝑊𝑌𝑡−1, as measures of the relative strength of internal and 

external habit persistence, where external habit persistence reflects the time agents of a 

particular unit need to pick up information from their neighbors. An econometric model that 

contains temporal and spatiotemporal lags of the dependent variable, 𝑌𝑡−1 and 𝑊𝑌𝑡−1, but not 

the spatial lag of the dependent variable, 𝑊𝑌𝑡, is known as the time-space recursive spatial 

econometric model and has gained a lot of attention in the spatial econometrics literature. 

According to Anselin et al. (2008), this model is especially useful to study spatial diffusion 

phenomena. In a social learning framework (e.g., Goyal, 2009, ch. 5), the spatial reaction 

function may take the form 𝑦𝑖𝑡 = 𝑅(𝑦𝑖𝑡−1, 𝑦−𝑖𝑡−1, 𝑥𝑖). LeSage and Pace (2009, ch. 7) refer to 

this model as a classic spatiotemporal (partial adjustment) model and employ it to show that 

high temporal dependence and low spatial dependence might nonetheless imply a long-run 

equilibrium with high spatial dependence. Fogli and Veldkamp (2011) adopt this model to 

investigate whether the labor force participation rate varies with past participation rates in 

surrounding areas, based on decennial data of female participation rates over the period 1940-

2000 at the U.S. county level. A way to view these papers is that information diffusion can 

change preferences, but that people require time to gather information, creating a delay in the 

decision-making process, and hence spatial dependence takes time to manifest itself. The time-

space recursive model may also be extremely useful to analyse the rise and spread of the Covid-

19 virus on a daily basis. New infections occur due to people who have recently been infected 

in the own and in neighboring areas, but the transfer of the virus takes time, i.e., in this particular 

case a couple of days.   

Despite the popularity of the time-space recursive model, a basic question is whether 

the removal of the spatial lag in the dependent variable, 𝑊𝑌𝑡, is supported by the data. Indeed, 

some researchers are troubled with the idea that the spatial autoregressive interaction between 

𝑌 and 𝑊𝑌 is instantaneous (see Upton and Fingleton, 1985, p. 369 for one of the first 

discussions on this issue). Instead, they suggest a model in which the autoregressive response 

is allotted one period to take effect, 𝑌𝑡 = 𝜂𝑊𝑌𝑡−1. By contrast, other reseachers do not seem to 
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have problems with the idea that 𝑌𝑡 in one spatial unit is regressed on 𝑌𝑡 of other spatial units, 

𝑌𝑡 = 𝜌𝑊𝑌𝑡. Data frequency may also matter (daily, monthly, quarterly or annual data). For that 

reason they do not preclude this specification in advance and suggest to determine whether the 

data can help to determine the most appropriate model. Elhorst et al. (2020) deliberately include 

the variable 𝑊𝑌𝑡 even though they expect that its coefficient will be zero. By investigating this, 

they are able to provide empirical evidence in favor of this hypothesis.  

An important restriction frequently overlooked is that the serial, spatial and 

spatiotemporal autoregressive coefficients may not sum up to a value that is equal to or greater 

than 1, 𝜏 + 𝜌 + 𝜂 < 1 , otherwise the spatial econometric model is not stable, i.e., a change in 

one of the explanatory variables or a shock in the error term will have the effect that the 

dependent variable does not return to an equilibrium value but instead explodes. If the variables 

𝑌𝑡−1 and 𝑊𝑌𝑡−1 are not included, as in a static spatial econometric model, researchers are 

generally aware that the spatial autoregressive parameter 𝜌 of the variable 𝑊𝑌𝑡 should take a 

value in the interval −1/𝜔𝑚𝑖𝑛 < 𝜌 < 1, where 𝜔𝑚𝑖𝑛 is the smallest negative eigenvalue of W. 

However, when these variables are also included, then this condition changes into 𝜏 + 𝜌 + 𝜂 <

1. Details on accompanying restrictions that should also hold but are less relevant in empirical 

research are available in Elhorst (2014, section 4.3). One outstanding example in which this 

restriction is overlooked concerns the advanced study of Fogli and Veldkamp (2011). These 

authors only include the variables 𝑌𝑡−1 and 𝑊𝑌𝑡−1, as a result of which 𝜏 + 𝜂 < 1 is required 

for stability. However, in their preferred model they find 0.916 + 0.570 > 1. In a similar study 

based on a panel of 108 regions across eight EU countries over the period 1986-2010, Halleck 

Vega and Elhorst (2017) find that the sum of both coefficients is smaller than one (0.845+0.019 

for the total working population, 0.875+0.014 for the male, and 0.928+0.004 for the female 

working population).  

Another empirical regularity which is often found but many researchers are not aware 

of is 𝜂 = −𝜏𝜌. Parent and LeSage (2011, 2012) show that imposing this parameter constraint 

might avoid overidentification problems, while Elhorst (2010) shows that under this constraint 

the impact of a change in one of the explanatory variables gradually diminishes over both space 

and time, i.e., these two effects can be separated from each other mathematically. The impact 

of a change in one of the explanatory variables over space falls by the factor 𝜌𝑊 for every 

higher-order neighbor, and over time by the factor 𝜏 for every next time period. Due to this 

property, Lee and Yu (2015) label it as the separable space-time filter. Although this empirical 

regularity does not have to be met in theory, empirical evidence in favor of it has been found in 



 11 

many studies. For example, in the short empirical application on housing prices accompanying 

the work of Shi and Lee (2017, Table 4), the authors find a positive and significant value for 𝜂 

of 0.05405, while the constraint 𝜂 = −𝜏𝜌, which equals 0.05405 ≈ −[(−0.05527) ×

0.68981], cannot be rejected statistically. Since the degree of habit persistence 𝜏 in most studies 

is positive, this empirical regularity implies that 𝜌 and 𝜂 have opposite signs, i.e., if the spatial 

lag has a positive sign, the spatiotemporal lag has a negative sign, as a result of which the net 

effect of these two terms is smaller than the positive effect of the spatial lag. Many researchers 

are puzzled by such a finding, perhaps because it has a stronger statistical than an economic-

theoretical background. Lee and Yu (2015) discuss several limitations of imposing this 

empirical regularity. First, if 𝜏 = 0 or 𝜌 = 0, the spatiotemporal lag 𝑊𝑌𝑡−1 will automatically 

also have no effect since 𝜂 = 0, which rules out diffusion and external habit persistence as in 

Korniotis (2010). Second, the omission of 𝑊𝑌𝑡−1 causes inaccuracy in forecasting when this 

variable is part of the true but unknown data generating process. Third, it rules out the 

possibility that 𝜌 and 𝜂 have the same sign, provided that 𝜏 is positive. Fourth, since both 𝜏 and 

𝜌 are smaller than one in absolute value, so will 𝜂. 

 

5 Spatial lags in the explanatory variables: 𝑾𝑿𝒕 

Halleck Vega and Elhorst (2015) and Elhorst and Halleck Vega (2017) provide four reasons 

why to include spatial lags in the explanatory variables. First, since a spatial econometric model 

may potentially contain K spatial lags in the explanatory variables, one in the dependent 

variable, and one in the error term, the spatial lags in the explanatory variables are dominating, 

i.e., K relative to K+2. In view of this it makes sense to focus on these spatial lags first.  

Second, the SAR, SE and SAC models are of limited use in empirical research due to 

initial restrictions on the spillover effects they can potentially produce. In the SAR and SAC 

models the ratio between the spillover effect and the direct effect is the same for every explanatory 

variable, while in the SE model the spillover effects are set to zero by construction. Only in the 

SLX, SDE, SD and GNS models can the spatial spillover effects take any value. Table 1 gives of 

overview. 

Third, the spatial weight matrix of spatial lags in the explanatory variables can easily be 

parameterized, for example, according to an exponential or inverse distance matrix, or as a 

gravity type of model, which has a stronger background in economic theory. Consequently, this 

setup offers the opportunity to consider a broader spectrum of potential specifications of the  
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Table 1 Spatial econometric models with different combinations of spatial lags and their 

 flexibility regarding spatial spillovers 

Type of model Spatial lag(s) Flexibility spatial spillovers 

SAR, Spatial autoregressive model*  WY Constant ratios 

SEM, Spatial error model Wu Zero by construction 

SLX, Spatial lag of X model WX Fully flexible 

SAC, Spatial autoregressive 

combined model** 

 

WY, Wu 

Constant ratios 

SDM, Spatial Durbin model WY, WX Fully flexible 

SDEM, Spatial Durbin error model WX, Wu Fully flexible 

GNS, General nesting spatial model WY, WX, Wu Fully flexible 

* Also known as the spatial lag model, ** Also known as the SARAR model 

 

spatial weight matrix than the traditional first-order binary contiguity matrices or the pre-

specified exponential and inverse distance matrices (with or without a cut-off point). 

 Fourth, econometric-theoretical researchers are mainly interested in spatial econometric 

models containing spatial lags in the dependent variable, the error term, or both (i.e., the SAR, 

SEM, and SAC models, respectively), because of the econometric problems and often 

complicated regularity conditions accompanying the estimation of these models. The reason 

they do not focus on the spatial econometric model with spatial lags in the explanatory variables 

is because their inclusion does not cause severe additional econometric problems, provided that 

the explanatory variables 𝑋 are exogenous and the spatial weight matrix 𝑊 is known and 

exogenous. This causes a gap in the level of interest in spatial lags between econometric 

theoreticians and practitioners. One of the advantages of the SLX model over other spatial 

econometric models or of including 𝑊𝑋 variables in general is that non-spatial econometric 

techniques can be used to test for potential endogeneity of the X and the accompanying 𝑊𝑋 

variables. It concerns the Hausman test for endogeneity in combination with tests for the 

validity of the instruments to assess whether they satisfy the relevance and exogeneity 

criterions. The methodology behind these tests is explained in Halleck Vega and Elhorst (2015) 

and applied to the cigarette demand data set of 46 U.S. states over the period 1963-1992. One 

of their main findings is that the price of cigarettes in the own state is endogeneous, but the 

price in neigboring states, reflecting the spatial lag of this explanatory variable, is not. In 

principle, these kind of tests can also be used to test whether the varables used to instrument 

the spatial lag in the dependent variable, 𝑊𝑌𝑡, are relevant and exogenous when applying 

IV/GMM estimators to estimate the parameters of a spatial econometric model, but remarkably, 

this is rarely done (see Drukker et al., 2013). 

Just as for the spatial lag in the dependent variable, the number of studies that do provide 

an economic-theoretical underpinning of spatial lags in the explanatory variables is limited. In 
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their spatial econometric textbook, LeSage and Pace (2009) provide several motivations for 

including spatial lags in general and the spatial Durbin model in particular, although most of 

these motivations are statistically rather than economic-theoretically driven. Ertur and Koch 

(2007) develop an economic-theoretical model of economic growth that results in a spatial 

Durbin model, i.e., a model in which economic growth is regressed on economic growth in 

neighboring economies, on the initial income level in the own and in neighboring economies, 

and on the rates of saving, population growth, technological change and depreciation in the own 

and in neighboring economies. Yesilyurt and Elhorst (2017) develop an economic-theoretical 

model of military expenditures as a ratio of GDP which likewise results in a spatial Durbin 

model. In this model the expenditures in one country are explained by their counterparts in 

neighboring countries, as well as economic, political, and strategic factors that mark the own 

and neighboring countries. Firmino Costa da Silva et al. (2017) develop a spatially augmented 

population growth model building on Glaeser (2008) that results in a dynamic GNS model. 

Heijen and Elhorst (2018) develop an economic-theoretical model explaining the diffusion of 

waste disposal taxes across municipalities. In this model, spillover effects may occur for two 

reasons. First, (illegal) dumping of waste will become more prevalent, which may not be 

confined to the municipality that introduces a waste disposal tax. Second, if a particular 

municipality introduces a waste disposal tax, the policymakers and citizens of neighboring 

municipalities obtain valuable information about the impact of this taxing scheme, which may 

help them to decide whether it is also suitable for them. Their economic-theoretical model of 

these spillover effects results again in a spatial Durbin model. In the economic-theoretical game 

model of Xu and Lee (2018), a spatial Durbin model results if the benefits of individual i take 

the form 𝑦𝑖(𝜌 ∑ 𝑤𝑖𝑗𝑦𝑗 + 𝑋𝑖
′𝛽 + ∑ 𝑤𝑖𝑗

𝑁
𝑗=1 𝑋𝑗

′𝜃 + 𝜀𝑖)
𝑁
𝑗=1 . 

 

6 A spatial lag in the error term: 𝑾𝒖𝒕 

A spatial lag in the error term does not require a theoretical model for a spatial or social 

interaction process, but instead, is consistent with a situation where determinants of the 

dependent variable omitted from the model are spatially autocorrelated, or with a situation 

where unobserved shocks follow a spatial pattern. 

In contrast to the spatial econometrics literature, the (G)VAR literature is more focused 

on the impact of idiosyncratic shocks to the dependent variable in a given unit on that of the 

unit itself and on neighboring units, where the impact of neigboring areas is sometimes labeled 

contagion. These effects can be simulated by replacing the second 𝑁 × 𝑁 matrix on the right-
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hand side in Equations (A1) and (A2) in the appendix to this paper by a 𝑁 × 1 vector 𝑆 =

(… , 𝑠𝑖, … ), where 𝑠𝑖 is generally set to one standard error of the error term representing the 

shock, and premultiplying this 𝑁 × 1 vector by the 𝑁 × 𝑁 spatial multiplier matrix to get an 

𝑁 × 1 vector of responses to a shock in a particular unit. For applications, see Lacombe and 

LeSage (2015), Elhorst and Zigova (2014), and Elhorst et al. (2021). 

An important and well-known econometric property of a spatial lag in the error term is 

that it does affect the efficiency of the parameter estimates of the right-hand side variables in 

the spatial econometric model, but not its consistency. This property has so far been underused 

to test for misspecification problems. A Hausman test can be used whenever there are two 

consistent estimators, one of which is inefficient, while the other is efficient. Pace and LeSage 

(2008) develop this test to compare OLS and SEM estimates. According to LeSage and Pace 

(2009, p. 62), rejection of the null hypothesis of equality in OLS and SEM coefficient estimates 

can be useful in diagnosing the presence of omitted variables that are correlated with variables 

included in the model. The test statistic follows a chi-squared distribution with degrees of 

freedom equal to the number of regression parameters under test. Three different outcomes are 

possible (Elhorst and Halleck Vega, 2017). First, the OLS and SEM coefficient estimates are 

not significantly different from each other and the spatial autocorrelation coefficient is not 

significant. When this occurs, extension of the OLS model with spatial autocorrelation is not 

necessary and may be left aside. Second, the OLS and SEM coefficient estimates are not 

significantly different from each other, but the spatial autocorrelation coefficient is significant. 

If this occurs, SEM yields a significantly higher log-likelihood function value than OLS, as a 

result of which the conclusion must be that the spatial error term is capturing the effect of 

omitted variables. However, since the null hypothesis cannot be rejected, it may concurrently 

be concluded that these omitted variables are not correlated with the included variables and thus 

that the SEM re-specification of the OLS model leads to an efficiency gain. Third, the OLS and 

SEM coefficient estimates are significantly different from each other and the spatial 

autocorrelation coefficient is significant (the probability that the spatial autocorrelation 

coefficient will be insignificant here is negligible). This outcome points to misspecification 

problems due to omission of relevant explanatory variables. By replacing OLS and SEM by 

respectively SLX and SDEM, and SDM and GNS in the text of the three potential outcomes set 

out above, both for static and dynamic versions of these models, similar tests can be carried out 

for more advanced spatial econometric models. Such an approach may help to test for 

misspecification problems on a broader scale than has been done up to now. 
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Let 𝜁 = (𝜏, 𝜌, 𝜂, 𝛽𝑇 , 𝜃𝑇)𝑇 the response parameters of the spatial econometric model in 

Equation (1) and suppose that the researcher would like to investigate whether this dynamic SD 

model is tested against the alternative dynamic GNS model, i.e., the dynamic SD model 

extended to include a spatially autocorrelated error term. The Hausman test can then be used to 

test whether this only affects the efficiency of the response parameters and thus whether 

misspecification problems do not occur. The null hypothesis of the Hausman test is H0: 𝜁SDM =

𝜁𝐺𝑁𝑆 and the alternative hypothesis is H1: 𝜁SDM ≠ 𝜁GNS. The test statistic takes the form 

 

𝐻 = (𝜁SDM − 𝜁GNS)′(ΣSDM − ΣGNS)−1(𝜁SDM − 𝜁GNS),       (2) 

 

where 𝜁SDM and 𝜁GNS denote the parameter estimates of respectively the SD and GNS models. 

ΣGNS and ΣSDM denote the corresponding variance-covariance matrices of the parameter 

estimates. From an econometric-theoretical point of view, the parameter estimates should be 

the same since both estimators are consistent if the model is correctly specified. The test statistic 

follows a chi-squared distribution with degrees of freedom equal to the number of regression 

parameters under test, which in this case is 2K+3. Rejection of the null diagnoses the presence 

of omitted variables that are correlated with variables included in the model. An alternative way 

to determine the variance-covariance matrix ΣSDM under the null is discussed in Pace and 

LeSage (2008). 

 

7 Cross-sectional and time-period specific effects 

The standard reasoning behind spatial specific effects is that they control for all space-specific 

time-invariant variables whose omission could bias the estimates in a typical cross-sectional study 

(Baltagi, 2005). The spatial specific effects may be treated as fixed or as random effects. In the 

fixed effects model, a dummy variable is introduced for each spatial unit, while in the random 

effects model, 𝑣𝑖 is treated as a random variable that is independently and identically distributed 

with zero mean and variance 𝜎𝑣.  

The standard reasoning behind time specific effects is that they control for all time specific 

spatial-invariant variables whose omission could bias the estimates in a typical time-series study. 

The time specific effects may be treated as fixed or as random effects. In the fixed effects model, 

a dummy variable is introduced for each time period, while in the random effects model, 𝜉𝑡 is 

treated as a random variable that is independently and identically distributed with zero mean and 

variance 𝜎𝜉.  
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Finally, it is assumed that the random variables 𝑣𝑖, 𝜉𝑡 and 𝜀𝑖𝑡 (with variance 𝜎𝜀
2) are 

independent of each other. To test this assumption of zero correlation between the random effects 

components, a Hausman specification test might be used (Baltagi, 2005, pp. 66-68; Lee and Yu, 

2012). However, one may question whether this test is really needed. Experience shows that spatial 

econometricians tend to work with space-time data of adjacent spatial units located in unbroken 

study areas, otherwise the spatial weight matrix cannot be defined. Consequently, the study area 

often takes a form similar to all counties of a state or all regions in a country. Under these 

circumstances the fixed effects model is more appropriate than the random effects model, because  

the idea that a limited set of regions is sampled from a larger population must be rejected.  

The same holds for time specific effects. Most researchers use data over a consecutive time 

span, otherwise dynamic effects cannot adequately be analysed. Consequently, the study period 

often covers all its time periods. Under these circumstances the fixed effects model is more 

appropriate than the random effects model, because the idea that a limited set of time periods is 

sampled from a larger population must be rejected. 

 

8 Cross-sectional averages  

One objection to time period fixed effects is that each time dummy has the same homogeneous 

impact on all observations in period t, while it is likely that, for example, business cycle effects 

hit one unit harder than another unit. The time needed and the extent to which a unit is able to 

recover from a shock may also differ from one unit to another. An alternative is to replace these 

time dummies by time-specific cross-sectional averages of the variables �̅�𝑡, �̅�𝑡−1, and �̅�𝑘𝑡 

(k=1,…,K) that have different heterogeneous impacts on the observations in each time period t. 

Since the numbers of parameters to be estimated increases rapidly with the number of common 

factors, most empirical studies try to keep the number of cross-sectional averages to a minimum. 

Cicarelli and Elhorst (2018) find that, using cigarette demand data of 69 Italian regions over 

the period 1877-1913, controlling for �̅�𝑡 and �̅�𝑡−1 only already effectively filters out the 

common time trends in the data. The cross-sectional averages of the explanatory variables in 

their model are not needed. 

The idea to link the individual observations to cross-sectional averages and to estimate 

this relationship for each individual observation, in regional studies often regional observations 

to its counterpart observed at the national level, dates back to Thirlwall (1966) and Brechling 

(1967), and is known as the (regional) cyclical sensitivity literature. A critical overview of 13 

studies on regional unemployment cyclical sensitivity models can be found in Elhorst (2003, 
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section 2.1). Importantly, regional unemployment rates tend to move in tandem with the 

national unemployment rate, but within the common rises and falls over time, the extent to 

which a region’s rate responds to changes in the national rate can be quite heterogeneous. This 

implies that studies on cyclical sensitivity that appeared back in the 1960s have paid attention 

to what can be termed common factors, and that spatial econometric studies have started to pay 

attention again to this important type of cross-sectional dependence. This literature also 

contrasts two-step procedures that have been proposed in the literature, where the observations 

are first taken in deviation from their national average (US) as in Blanchard and Katz (1992) or 

continental average (EU) as in Decressin and Fatás (1995).  

Although this literature lost interest, the prevalence of recessionary shocks, and notably 

the financial, euro and covid-19 crises, makes it ever more pertinent to study cyclical sensitivity. 

Moreover, since the common factor literature based on cross-sectional averages developed by 

Pesaran (2006) and many related authors share the same central idea, the cyclical sensitivity 

literature comes back into the picture again. Of particular importance is that heterogeneity is 

considered in both strands of literature and that common factors can be embedded in the 

economic-theoretical literature on cyclical sensitivity. In line with this, Halleck Vega and Elhorst 

(2016) and Ciccarelli and Elhorst (2018) also attempt to interpret the estimated common factor 

coefficients, another strength of this approach which unfortunately has hardly been explored up 

to now. 

 

9 Principal components 

A potential disadvantage of principal components is that they are often difficult to interpret, 

especially if they are compared with cross-sectional averages. Up to now, not many empirical 

studies have attempted to interpret the factor loadings of the principal components. 

To find out which set of common factors is able to filter out common factors most 

effectively, the cross-sectional dependence (CD) test developed by Pesaran (2015) may be used. 

This test is based on the correlation coefficients between the time-series observations of each 

pair of units with respect to a particular variable, in this case the residuals of Equation (1), 

resulting in N(N−1) correlations. Denoting these estimated correlation coefficients between the 

time-series for units i and j as 𝜅𝑖𝑗, the test statistic is defined as 𝐶𝐷 =

√2𝑇/(𝑁(𝑁 − 1) ∑ ∑ 𝜅𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 . It is a two-sided test statistic whose limiting distribution 

converges to the standard normal distribution, and thus −1.96 and 1.96 as critical values at the 
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5% significance level, provided that N goes to infinity faster than T or when T is fixed, reflecting 

the case in most spatial econometric studies. 

Elhorst (2021) compares the performance of a dynamic spatial panel data model applied 

the cigarette demand data set of 46 U.S. States over the period 1963-1992 when using spatial 

and time period fixed effects, cross-sectional averages, and principal components. It is found 

that only the model with spatial and time period fixed effects is able to produce a CD-test on 

the residuals that takes a value in the interval [-1.96,+1.96]. It should be noted, however, that 

two other recent studies point to different results. Cicarelli and Elhorst (2018) find that the 

dynamic model with cross-sectional averages outperforms its counterpart with spatial and time-

period fixed effects. Similarly, Elhorst et al. (2020) find that the dynamic model with principal 

components outperforms its counterpart with spatial and time-period fixed effects. The 

conclusion must be that the best model to control for common time trends might differ from 

one empirical study to another. 

 

10 Conclusion 

The general nesting spatial (GNS) econometric model for spatial panels with common factors 

(CF) is the most general spatial econometric model currently available for empirical research. 

Hopefully, this paper encourages more scholars to work with this model in their empirical 

research. At the same time, they should be warned that this is a difficult model to work with 

since the estimation results produced by this model are often quite puzzling, especially in the 

beginning. This advanced model requires extensive research experience in spatial econometrics 

and sufficient economic-theoretical knowledge of the problem at hand. Often the results are not 

in line with initial expectations, but after thinking them over and debating them with other 

researchers, progress towards an acceptable model specification can be made step by step. 
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Appendix: Direct and indirect (spatial spillover effects) 

Direct interpretation of the coefficients in the dynamic GNS model with common factors in 

Equation (1) is difficult, because they do not represent marginal effects of the explanatory 

variables (LeSage and Pace, 2009). By considering the reduced form of the model  

 

𝑌𝑡 = (𝐼𝑁 − 𝜌𝑊)−1(𝜏 + 𝜂𝑊)𝑌𝑡−1 + (𝐼𝑁 − 𝜌𝑊)−1(𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃) + 𝑅,             (A1) 

 

where R is a rest term covering all the remaining terms (intercept, spatial and time-period fixed 

effects, common factors, and/or the error terms), the matrix of (true) partial derivatives of the 

expected value of the dependent variable, 𝐸(𝑌𝑡), with respect to the kth explanatory variable of 

𝑋𝑡 in unit 1 up to unit N can be seen to be 

 

[
𝜕𝐸(𝑌𝑡)

𝜕𝑋1𝑘𝑡
…  

𝜕𝐸(𝑌𝑡)

𝜕𝑋𝑁𝑘𝑡
] = (𝐼𝑁 − 𝜌𝑊)−1(𝐼𝑁𝛽𝑘 + 𝑊𝜃𝑘).                (A2) 

 

This N×N matrix of partial derivatives denotes the effects of a change of a particular explanatory 

variable in a particular unit on the dependent variable of all other units in the short term. Note 

that this N×N matrix is actually the product of two N×N matrices. The first of these two 

matrices, the inverse of (𝐼 − 𝜌𝑊), better known as the spatial multiplier matrix, is not worked 

out further since a simple analytical expression for this inverse does not exist. Similarly, the 

long-term effects can be seen to be 

 

[
𝜕𝐸(𝑌𝑡)

𝜕𝑋1𝑘𝑡
…  

𝜕𝐸(𝑌𝑡)

𝜕𝑋𝑁𝑘𝑡
] = ((1 − 𝜏)𝐼𝑁 − (𝜌 + 𝜂)𝑊)−1(𝐼𝑁𝛽𝑘 + 𝑊𝜃𝑘).                         (A3) 

 

LeSage and Pace (2009) and Debarsy et al. (2012) define the direct effect as the average of the 

diagonal elements of the matrix on the right-hand side of (A1) or (A2), and the indirect effect 

as the average of either the row sums or the column sums of the off-diagonal elements of these 

matrices (since the numerical magnitudes of these two calculations of the indirect effect are the 

same, it does not matter which one is used). If the spatial weight matrix W does not change over 

time, the outcomes are independent from the time index; this explains why the right-hand sides 

of these equations do not contain the symbol t. A synonym for the indirect effect is spatial 

spillover effect.  
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 The significance levels of the short and long-term direct and spatial spillover effects can 

be bootstrapped (see Elhorst, 2014, Section 2.7.2 for details) or be determined by the delta 

method (Arbia et al., 2020). 
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