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The general nesting spatial (GNS) econometric model for spatial panels with common 

factors (CF) reads as 

 

𝑌𝑡 = 𝝉𝒀𝒕−𝟏 + 𝝆𝑾𝒀𝒕 + 𝜼𝑾𝒀𝒕−𝟏 + 𝑋𝑡𝛽 + 𝑾𝑿𝒕𝜽 + ∑ 𝜞𝒓
𝑻𝒇𝒓𝒕𝒓 + 𝑢𝑡,   𝑢𝑡 = 𝝀𝑾𝒖𝒕 + 𝜀𝑡 

 

Spatial lags are in red: 1+K+1=K+2 in total (K is number of X variables) 

Dynamic effects are in green: 2 in total 

Common factors are in blue: # parameters depend on type of CF, they are reported 

below. 
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Spatial econometric model 

Linear regression model (Y=Xβ+ε) extended to include 
 
Endogenous interaction effect (1): ρWY 
- Dependent variable y of unit A ↔ Dependent variable y of unit B 
- Y denotes an N×1 vector consisting of one observation on the dependent 
variable for every unit in the sample (i=1,…,N) 
- W is an N×N nonnegative matrix describing the arrangement of the units in 
the sample 
 
Exogenous interaction effects (K): WXθ 
- Independent variable x of unit A → Dependent variable y of unit B 
- X denotes an N×K matrix of exogenous explanatory variables 
 
Interaction effect among error terms (1): λWu 
- Error term u of unit A ↔ Error term u of unit B 
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Dynamics: 𝒀𝒕−𝟏 and 𝑾𝒀𝒕−𝟏 

Habit persistence. It takes time to change behavior. 

Korniotis (2010): Internal and external habit persistence. 

Models without 𝑾𝒀𝒕  

Anselin et al. (2008): time-space recursive spatial econometric model. Suitable to 

explain spatial diffusion phenomena. Think of the rise and spread of the Covid-19 

virus on a daily/weekly basis. 

LeSage and Pace (2009, ch. 7): spatiotemporal (partial adjustment) model. High 

temporal dependence and low spatial dependence might nonetheless imply a long-

run equilibrium with high spatial dependence. 

Fogli and Veldkamp (2011): Information diffusion can change preferences (female 

labor force participation), but people require time to gather information, creating a 

delay in the decision-making process, and hence spatial dependence takes time to 

manifest itself. 
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Dynamic spatial panel data model with FE, RE or CF 

Yt=τYt-1+ρWYt+ηWYt-1+Xtβ+WXtθ+error terms  

 

Short-term effects in dynamic model (ignore τ and η) /  

Long-term effects in static model: 𝒀𝒕−𝟏 and 𝑾𝒀𝒕−𝟏 are not included 
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Long-term (set Yt-1=Yt=Y* and WYt-1=WYt=WY*) 
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Direct effect: Mean diagonal element N by N matrix 

Indirect effect: Mean row sum of off-diagonal elements N by N matrix 

Note: Error terms (FE,RE,CF) drop out due to taking expectations   
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Note: t-values of direct and indirect effects are bootstrapped or 

determined by the delta method. 

Important facts in empirical research 

Indirect effect=spatial spillover effect=main focus of spatial 

economists/spatial econometricians 

Generally, it is hard to find significant spatial spillover effects since 

they depend on so many parameters (3 short term, 5 long term); many 

empirical studies do not recognize this. 

It is likely that the magnitude of the direct effects is greater than that 

of the indirect effects. If not, explain! 

Always verify whether ρ<1 (static), or τ+ρ+η<1 (dynamic) 
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Spatial econometric models with different combinations of spatial interaction effects and the  

flexibility regarding spatial spillovers 

Type of model Spatial 

interaction 

effects 

# Flexibility spillovers 

OLS, Ordinary least squares model - 0 Zero by construction 

SAR, Spatial autoregressive model  WY 1 Constant ratios 

SEM, Spatial error model Wu 1 Zero by construction 

SLX, Spatial lag of X model WX K Fully flexible 

SAC, Spatial autoregressive 

combined model (SARAR) 

WY, Wu 2 Constant ratios 

SDM, Spatial Durbin model WY, WX K+1 Fully flexible 

SDEM, Spatial Durbin error model WX, Wu K+1 Fully flexible 

GNS, General nesting spatial model WY, WX, Wu K+2 Fully flexible 
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Direct and spillover effects corresponding to different model specifications  

Short term effects dynamic model/long term effects static model 

Model  Direct effect Spillover effect 

OLS / SEM (Wu) 

            

βk 0 

SAR (WY)/  

SAC (WY, Wu)  * 

Average diagonal  

element of 

(I-ρW)-1βk 

Average row sum of off-

diagonal elements of 

(I-ρW)-1βk 

SLX / SDEM 

(WX  / Wu) 

βk θk 

 

SDM / GNS 

(WY+WX/Wu) 

 

Average diagonal  

element of 

(I-ρW)-1[βk+Wθk] 

 

Average row sum of off-

diagonal elements of 

(I-ρW)-1[βk+Wθk] 

* Ratio between the spillover effect and the direct effect in the SAR/SAC model is the 

same for every explanatory variable. 
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Global versus local spillover effects 

Indirect effects that occur if ρ=0 (of WY) and 𝜃 ≠ 0 are known as 

local spillover effects  
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 This is local because the indirect effects only fall on spatial units for 

which the elements of W are non-zero. Local spillovers go together 

with dense(r) W matrix. 
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Indirect effects that occur if ρ≠0 (of WY) and θ=0 are known as 

global spillover effects 
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This is global because the indirect effects fall on all units; even if 

W contains many zero elements, (I-ρW)-1 will not.  

Global spillovers tend to go together with sparse(r) W matrix; due 

to the higher-order terms ρgWg (g>1) locations farther away are 

reached anyway even if they are not directly connected. 
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∑ 𝜞𝒓
𝑻𝒇𝒓𝒕 = 𝝁 + 𝜶𝒕𝜾𝑵

𝒓
 

𝝁: vector of spatial fixed or random effects (don’t confuse spatial fixed effects with 

spatial lags) 

𝜶𝒕: time period fixed or random effects (t=1,…,T) 

Yt=τYt-1+ρWYt+ηWYt-1+Xtβ+WXtθ+μ+αtιN+εt 

The standard reasoning behind spatial specific effects  𝝁 = (𝝁𝟏, … , 𝝁𝑵)′ is that they 

control for all space-specific time-invariant variables whose omission could bias the 

estimates in a typical cross-sectional study (Baltagi, 2005). 

The spatial specific effects may be treated as fixed effects or as random effects. In the 

fixed effects model, a dummy variable is introduced for each spatial unit, while in the 

random effects model, μi (i=1,…,N) is treated as a random variable that is independently 

and identically distributed with zero mean and variance σμ. Furthermore, it is assumed that 

the random variables μi and εit are independent of each other. 

The same for 𝜶𝒕.
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The random effects model is quite popular among spatial econometricians/practitioners, which can be 

explained by three reasons. 

(1) It may be considered as a compromise solution to the all or nothing way of utilizing the cross-
sectional component of the data. Panel data models with controls for spatial fixed effects only utilize 
the time-series component of the data, whereas these models without such controls employ both time-
series and cross-sectional components. The parameter φ in random effects models, which can take 
values on the interval [0,1], may be used to estimate the weight that may be attached to the cross-
sectional component of the data. If this weight equals 0, the random effects model reduces to the fixed 
effects model; if it goes to 1, it converges to its counterpart without controls for spatial fixed effects. 

(2) The random effects model avoids the loss of degrees of freedom incurred in the fixed effects model 
associated with a relatively large N. Besides, the spatial fixed effects can only be estimated consistently 
when T is sufficiently large, because the number of observations available for the estimation of each μi 
is T. Importantly,  the inconsistency of μi is not transmitted to the estimator of the slope coefficients β, 
since it is not a function of the estimated μi.  
In other words, the incidental parameters problem does not matter when β are the coefficients of 

interest and the spatial fixed effects μi are not, which is the case in most empirical studies. 

(3) It avoids the problem that the coefficients of time-invariant variables or variables that only vary a 
little cannot be estimated.
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Despite its popularity, the question whether the random effects model is also an 

appropriate specification is often left unanswered. Three conditions should be satisfied 

before the random effects model may be implemented: 

 

(1) The number of units should potentially be able to go to infinity.  
(2) The units of observation should be representative of a larger population.  
(3) The traditional assumption of zero correlation between the random effects μi and 

the explanatory variables needs to be made, which in general is particularly 
restrictive.  

 

These conditions do not tend to be satisfied in spatial research. 
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There are two types of asymptotics that are commonly used in the context of spatial 

observations:  

(a) The ‘infill’ asymptotic structure, where the sampling region remains bounded as 

N . In this case more units of information come from observations taken from 

between those already observed; and  

(b) The ‘increasing domain’ asymptotic structure, where the sampling region 

grows as N→∞. In this case there is a minimum distance separating any two spatial units 

for all N.  

 

According to Lahiri (2003), there are also two types of sampling designs:  

(a) The stochastic design where the spatial units are randomly drawn; and  

(b) The fixed design where the spatial units lie on a nonrandom field, possibly 

irregularly spaced.  

 

The spatial econometric literature mainly focuses on increasing domain asymptotics 

under the fixed sample design (Cressie 1993, p. 100; Griffith and Lagona 1998; Lahiri 

2003).  
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Although the number of spatial units under the fixed sample design can potentially go 

to infinity, this design is incompatible with the increasing domain asymptotic structure. 

If there is a minimum distance separating spatial units and the researcher wants to collect 

data for a certain type of spatial units within a particular study area, there will be an 

upper bound on the number of spatial units. Furthermore, when data on all spatial units 

within a study area are collected it is questionable whether they are still representative 

of a larger population.  

 

For a given set of regions, such as all counties of a state or all regions in a country, the 

population may be said ‘to be sampled exhaustively’ (Nerlove and Balestra 1996, p. 4), 

and ‘the individual spatial units have characteristics that actually set them apart from a 

larger population’ (Anselin 1988, p. 51). In other words, if the data happen to be a 

random sample of the population, unconditional inference about the population 

necessitates estimation with random effects. If, however, the objective is limited to 

making conditional inferences about the sample, then fixed effects should be specified. 
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In spatial research there is a prominent reason why investigators generally do not draw 

a limited sample of units from a particular study area, but rather work with cross-

sectional or space-time data of adjacent spatial units located in unbroken study areas. 

This is because otherwise the spatial weight matrix cannot consistently be specified 

and the impact of spatial interaction effects cannot be consistently estimated. Only 

when neighboring units are also part of the sample, it is possible to measure the impact 

of these neighboring units. In other words, this type of research just requires that the data 

covers the whole population, since it would break down when having a random sample 

of the population.  

  

In conclusion, we can say that the fixed effects model is generally more 

appropriate than the random effects model since spatial econometricians tend to 

work with space-time data of adjacent spatial units located in unbroken study 

areas, such as all counties of a state or all regions in a country. 

The same applied to time. Researchers tend to work with consecutive time spans; 

otherwise the impact of dynamic effects cannot be consistently be estimated. 
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To test the assumption of zero correlation between the random effects μi and the 

explanatory variables, the Hausman specification test might be used (Baltagi 2005, pp. 

66-68). The hypothesis being tested is H0: h=0, where 
 

d)]d[var(dh 1T      

REFE β̂β̂d      

1*T*2

FE

1T2

RE )XX(ˆ)XX(ˆ)dvar(    

 

 

This test statistic has a chi-squared distribution with K degrees of freedom (the number 

of explanatory variables in the model, excluding the constant term). Hausman's 

specification test can also be used when the model is extended to include spatial lags 

(WY,WX). Then the coefficients of these spatial lags should also be included in this 

comparison test (Lee and Yu, 2012).  
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Empirical illustration: Cigarette Demand in the US 

Baltagi and Li (2004) estimate a demand model for cigarettes based on a panel from 46 

U.S. states (N=46) 

 

  ,)optional()optional()Ylog()Plog()Clog( ittiit2it1it   

 

where Cit is real per capita sales of cigarettes by persons of smoking age (14 years and 

older). This is measured in packs of cigarettes per capita. Pit is the average retail price of 

a pack of cigarettes measured in real terms. Yit is real per capita disposable income. 

Whereas Baltagi and Li (2004) use the first 25 years for estimation to reserve data for out 

of sample forecasts, we use the full data set covering the period 1963-1992 (T=30). Details 

on data sources are given in Baltagi and Levin (1986, 1992) and Baltagi et al. (2000). They 

also give reasons to assume the state-specific effects ( i ) and time-specific effects ( t ) 

fixed, in which case one includes state dummy variables and time dummies for each year. 

We have reasons to believe that spatial interaction effects need to be included in this 

model! 
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BOOTLEGGING  

 The main motivation to extend the basic model to include spatial interaction effects is the 

so-called bootlegging effect; consumers are expected to purchase cigarettes in nearby 

states, legally or illegally (smuggling), if there is a price advantage.  

 This smuggling behavior is a result of significant price variation in cigarettes across US 

states and partly due to the disparities in state cigarette tax rates. Baltagi and Levin (1986, 

1992) incorporate the minimum real price of cigarettes in any neighboring state as a proxy 

for the bootlegging effect.  

 A limitation is that this proxy does not account for cross-border shopping that may take 

place between other states than the minimum-price neighboring state (Baltagi and Levin, 

1986). This can be due to smuggling taking place over longer distances by trucks since 

cigarettes can be stored and are easy to transport (Baltagi and Levin, 1992) or due to 

geographically large states where cross-border shopping may occur in different neighboring 

states.  

 To take this into account, other studies have extended the model to explicitly incorporate 

spatial interaction effects. However, while the specification originally adopted by Baltagi 

and Levin (1992) resembles the SLX model but then with only one exogenous interaction 

effect (price), applied spatial econometric studies have either included: (i) endogenous 

interaction effects, (ii) interaction effects among the error terms or (iii) a combination of 

endogenous and exogenous interaction effects.
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STEP 1: Empirical illustration: Cigarette Demand in the US 

Estimation results of cigarette demand using panel data models without spatial interaction effects 

Determinants (1) (2) (3) (4) 

 Pooled 

OLS 

Spatial fixed 

effects 

Time-period 

fixed effects 

Spatial and time-

period  fixed effects 

Log(P)  -0.859 

(-25.16) 

-0.702 

(-38.88) 

-1.205 

(-22.66) 

-1.035 

(-25.63) 

Log(Y) 0.268 

(10.85) 

-0.011 

(-0.66) 

0.565 

(18.66) 

0.529 

(11.67) 

Intercept 3.485 

(30.75) 

   

R2 0.321 0.853 0.440 0.896 

LogL 370.3 1425.2 503.9 1661.7 

LM spatial lag 66.47 136.43 44.04 46.90 

LM spatial error 153.04 255.72 62.86 54.65 

robust LM spatial 

lag 

58.26 29.51 0.33 1.16 

robust LM spatial 

error 

144.84 148.80 19.15 8.91 

LR test spatial fixed effects: (2315.7, with 45 degrees of freedom [df], p < 0.01) 

LR test time-period fixed effects: (473.1, 29 df, p < 0.01) 

(robust) LM test (critical value 3.84): error model 
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One of the main questions is which model best describes the data. One of the criterions that may 

be used for this purpose is the likelihood ratio (LR) test based on the log-likelihood function 

values of the different models. The LR test is based on minus two times the difference between 

the value of the log-likelihood function in the restricted model and the value of the log-likelihood 

function of the unrestricted model: -2*(logLrestricted-logLunrestricted). This test statistic has a chi-

squared distribution with degrees of freedom equal to the number of restriction imposed. 

To investigate the (null) hypothesis that the spatial fixed effects are jointly insignificant, one may 

perform a likelihood ratio (LR) test. The results (2315.7, with 45 degrees of freedom [df], p < 0.01) 

indicate that this hypothesis must be rejected. Similarly, the hypothesis that the time-period fixed 

effects are jointly insignificant must be rejected (473.1, 29 df, p < 0.01). These test results justify 

the extension of the model with spatial and time-period fixed effects. 

Robust LM tests point to spatial error model. Critical value for 1 degree of freedom is 3.84. 

However, this result might be misleading since variables 𝑾𝑿𝒕 have not been controlled for. See 

Corrado and Fingleton (2012): 𝑾𝒀𝒕 variable picks up omitted 𝑾𝑿𝒕 variables or nonlinearities in 

the 𝑋 variables. 
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STEP 2: Focus on SDM (Limitation: SDEM left aside) 

To test the hypothesis whether the spatial Durbin model can be simplified to the spatial 

error model, H0: θ+λ=0, one may perform a Wald or LR test. The results reported in 

the second column using the Wald test (8.18, with 2 degrees of freedom [df], p=0.017) 

or using the LR test (8.28, 2 df, p=0.016) indicate that this hypothesis must be rejected. 

Similarly, the hypothesis that the spatial Durbin model can be simplified to the spatial 

lag model, H0: θ=0, must be rejected (Wald test: 17.96, 2 df, p=0.000; LR test: 15.80, 2 

df, p=0.000). This implies that both the spatial error model and the spatial lag model 

must be rejected in favor of the spatial Durbin model. 
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Estimation results cigarette demand: Spatial Durbin model specification with spatial and time-period specific effects 

Determinants (1) (2) 

 Spatial and time-period  

fixed effects 

bias-corrected* 

Random spatial effects, 

Fixed time-period effects 

W*Log(C) 0.264                 (8.25)   0.224                   (6.82) 

Log(P)  -1.001              (-24.36) -1.007                (-24.91) 

Log(Y) 0.603               (10.27) 0.593                 (10.71) 

W*Log(P)    0.093                 (1.13) 0.066                   (0.81) 

W*Log(Y) -0.314                (-3.93) -0.271                  (-3.55) 

Phi  0.087                    (6.81) 

σ2 0.005 0.005 

(Pseudo) R2 0.902 0.880 

(Pseudo) Corrected R2 0.400 0.317 

LogL 1691.4 1555.5 

Wald test spatial lag 17.96 (p=0.000) 13.90 (p=0.001) 

LR test spatial lag 15.80 (p=0.000) 14.48 (p=0.000) 

Wald test spatial error 8.18 (p=0.017) 7.38 (p=0.025) 

LR test spatial error 8.28 (p=0.016) 7.27 (p=0.026) 

Corrected R2 is R2 without the contribution of fixed effects (double-check this in Stata) 

Bias-correction based on Lee and Yu (2010). 
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Hausman test for random effects instead of fixed effects 

The last column in the Table above reports the parameter estimates if we treat ci as a random variable 

rather than a set of fixed effects. Hausman's specification test can be used to test the random effects model 

against the fixed effects model. The results (30.61, 5 df, p<0.01) indicate that the random effects model 

must be rejected.  

 

Another way to test the random effects model against the fixed effects model is to estimate the parameter 

"phi" ( 2  in Baltagi, 2005) using ML, which measures the weight attached to the cross-sectional 

component of the data and which can take values on the interval [0,1]. If this parameter equals 0, the 

random effects model converges to its fixed effects counterpart; if it goes to 1, it converges to a model 

without any controls for spatial specific effects. We find phi=0.087, with t-value of 6.81, which just as 

Hausman's specification test indicates that the fixed and random effects models are significantly different 

from each other. 
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Direct and indirect effects cigarette demand: Spatial Durbin model with spatial and time-period specific effects 

Direct effect Log(P) -1.013                 -1.012 

(-24.73)           (-23.93) 

-1.018                   -1.018 

(-24.64)             (-25.03) 

Indirect effect Log(P) -0.220                 -0.215 

(-2.26)               (-2.12) 

-0.199                   -0.195 

(-2.28)                 (-2.19) 

Total effect Log(P) -1.232                 -1.228 

(-11.31)           (-11.26) 

-1.217                  -1.213 

(-12.43)             (-12.21) 

Direct effect Log(Y) 0.594                   0.594 

(10.45)              (10.67) 

0.586                     0.583 

(10.68)                (10.53) 

Indirect effect Log(Y) -0.197                -0.196 

(-2.15)               (-2.18) 

-0.169                  -0.171 

(-2.03)                 (-2.06) 

Total effect Log(Y) 0.397                   0.398 

(4.61)                  (4.62) 

0.417                     0.412 

(5.45)                    (5.37) 

Notes: t-values in parentheses. Direct and indirect effects estimates:  

Left column (I-λW)-1 computed every draw, right column (I-λW)-1 approximated.  

HOWEVER: No evidence of bootlegging or substitution effect! 

We found evidence in favour of spatial Durbin model with fixed effects, but not 

of the bootlegging effect. What happens if we add dynamics? 
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Estimation results of cigarette demand using different model specifications 

Determinants (1) (2)  

 Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with lag WYt-1 

 

Intercept    

Log(C)-1  0.865               (65.04) INTERNAL HABIT PERSISTENCE: Significant 

 W*Log(C) 0.264                 (8.25) 0.076                 (2.00)  

W*Log(C)-1  -0.015                (-0.29) EXTERNAL HABIT PERSISTENCE: Insignificant 

Log(P)  -1.001              (-24.36) -0.266              (-13.19)  

Log(Y) 0.603               (10.27) 0.100                 (4.16)  

W*Log(P)    0.093                 (1.13)  0.170                 (3.66)  

W*Log(Y) -0.314                (-3.93) -0.022                (-0.87)  

R2 0.902 0.977  

LogL 1691.4 2623.3  

Notes: t-values in parentheses 
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Determinants (1) (2) 

 Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with lag WYt-1 

Log(C)-1  0.865               (65.04) 

W*Log(C) 0.264                 (8.25) 0.076                 (2.00) 

W*Log(C)-1  -0.015                (-0.29) 

Log(P)  -1.001              (-24.36) -0.266              (-13.19) 

Log(Y) 0.603               (10.27) 0.100                 (4.16) 

W*Log(P)    0.093                 (1.13)   0.170                 (3.66) 

W*Log(Y) -0.314                (-3.93) -0.022                (-0.87) 

LogL 1691.4 2623.3 

 

 

 

 

 

To investigate whether the extension of the 

non-dynamic model to the dynamic spatial 

panel data model increases the explanatory 

power of the model, one may test whether the 

coefficients of the variables Yt-1 and WYt-1 are 

jointly significant using an LR-test. The 

outcome of this test (2×(2623.3-

1691.4)=1863.8 with 2 df) evidently justifies 

the extension of the model with dynamic 

effects. 

Conclusion: Dynamic spatial Durbin model 

outperforms its non-dynamic counterpart. 
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Effects estimates of cigarette demand using different model specifications 

Determinants (1) (2) 

 Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with lag WYt-1 

Short-term direct  

effect Log(P) 

 -0.262          (-11.48) 

Short-term indirect  

effect Log(P) 

 0.160               (3.49) 

Short-term direct  

effect Log(Y) 

 0.099               (3.36) 

Short-term indirect  

effect Log(Y) 

 -0.018            (-0.45) 

Long-term direct  

effect Log(P) 

-1.013          (-24.73) -1.931            (-9.59) 

Long-term indirect  

effect Log(P) 

-0.220            (-2.26) 0.610               (0.98) 

Long-term direct  

effect Log(Y) 

0.594             (10.45) 0.770               (3.55) 

Long-term indirect  

effect Log(Y) 

-0.197            (-2.15) 0.345               (0.48) 

Notes: t-values in parentheses 

 

 A static (non-dynamic) spatial 

Durbin model cannot be used to 

calculate short-term effect 

estimates of the explanatory 

variables. 

 The direct effects estimates of the 

two explanatory variables in (1) are 

significantly different from zero 

and have the expected signs. 

Higher prices restrain people from 

smoking, while higher income 

levels have a positive effect on 

cigarette demand. The price 

elasticity amounts to -1.013 and the 

income elasticity to 0.594 in a non-

dynamic model.  
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Effects estimates of cigarette demand using different model specifications 

Determinants (1) (2) 

 Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with lag WYt-1 

Short-term direct  

effect Log(P) 

 -0.262          (-11.48) 

Short-term indirect  

effect Log(P) 

 0.160               (3.49) 

Short-term direct  

effect Log(Y) 

 0.099               (3.36) 

Short-term indirect  

effect Log(Y) 

 -0.018            (-0.45) 

Long-term direct  

effect Log(P) 

-1.013          (-24.73) -1.931            (-9.59) 

Long-term indirect  

effect Log(P) 

-0.220            (-2.26) 0.610               (0.98) 

Long-term direct  

effect Log(Y) 

0.594             (10.45) 0.770               (3.55) 

Long-term indirect  

effect Log(Y) 

-0.197            (-2.15) 0.345               (0.48) 

Notes: t-values in parentheses 

 

The spatial spillover effects of both 

variables in the non-dynamic spatial 

Durbin model are negative and 

significant. Own-state price increases 

will restrain people not only from 

buying cigarettes in their own state, 

but to a limited extent also from 

buying cigarettes in neighboring states 

(elasticity -0.220). By contrast, 

whereas an income increase has a 

positive effects on cigarette 

consumption in the own state, it has a 

negative effect in neighboring states. 
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The negative price spillover effects is not consistent with Baltagi and Levin 

(1992), who found that price increases in a particular state —due to tax increases 

meant to reduce cigarette smoking and to limit the exposure of non-smokers to 

cigarette smoke— encourage consumers in that state to search for cheaper 

cigarettes in neighboring states. 

 

However, whereas Baltagi and Levin’s (1992) model is dynamic, it is not spatial; 

and whereas our model so far contains spatial interaction effects, it is not (yet) 

dynamic. 
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Effects estimates of cigarette demand using different model specifications 

Determinants (1) (2) 

 Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with lag WYt-1 

Short-term direct  

effect Log(P) 

 -0.262          (-11.48) 

Short-term indirect  

effect Log(P) 

 0.160               (3.49) 

Short-term direct  

effect Log(Y) 

 0.099               (3.36) 

Short-term indirect  

effect Log(Y) 

 -0.018            (-0.45) 

Long-term direct  

effect Log(P) 

-1.013          (-24.73) -1.931            (-9.59) 

Long-term indirect  

effect Log(P) 

-0.220            (-2.26) 0.610               (0.98) 

Long-term direct  

effect Log(Y) 

0.594             (10.45) 0.770               (3.55) 

Long-term indirect  

effect Log(Y) 

-0.197            (-2.15) 0.345               (0.48) 

Notes: t-values in parentheses 

 

 

The short-term spatial spillover effect of a 

price increase turns out to be positive; the 

elasticity amounts to 0.160 and is highly 

significant (t-value 3.49). Although 

greater and again positive, we do NOT 

find empirical evidence that the long-term 

spatial spillover effect is also significant. 

A similar result is found by Debarsy et al. 

(2011). 

The spatial spillover effect of an income 

increase is not significant either. A similar 

result is found by Debarsy et al. (2011). 
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Effects estimates of cigarette demand using different model specifications 

Determinants (1) (2) 

 Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with lag WYt-1 

Short-term direct  

effect Log(P) 

 -0.262          (-11.48) 

Short-term indirect  

effect Log(P) 

 0.160               (3.49) 

Short-term direct  

effect Log(Y) 

 0.099               (3.36) 

Short-term indirect  

effect Log(Y) 

 -0.018            (-0.45) 

Long-term direct  

effect Log(P) 

-1.013          (-24.73) -1.931            (-9.59) 

Long-term indirect  

effect Log(P) 

-0.220            (-2.26) 0.610               (0.98) 

Long-term direct  

effect Log(Y) 

0.594             (10.45) 0.770               (3.55) 

Long-term indirect  

effect Log(Y) 

-0.197            (-2.15) 0.345               (0.48) 

Notes: t-values in parentheses 

 

 

Consistent with microeconomic theory, 

the short-term direct effects appear to be 

substantially smaller than the long-term 

direct effects; -0.262 versus -1.931 for 

the price variable and 0.099 versus 0.770 

for the income variable. 

The long-term direct effects in the 

dynamic spatial Durbin model, on their 

turn, appear to be greater (in absolute 

value) than their counterparts in the non-

dynamic spatial Durbin model; -1.931 

versus -1.013 for the price variable and 

0.770 versus 0.594 for the income 

variable. Apparently, the non-dynamic 

model underestimates the long-term 

effects. 
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Conclusion 

If a dynamic rather than a non-dynamic spatial econometric model is 

adopted and W is specified as binary contiguity matrix, empirical 

evidence is found in favor of the bootlegging effect. All other results 

also make sense from an economic-theoretical point of view. 

 

On the other hand, questions that remain are the theoretical 

motivation in favor of adding a spatial lag W*Log(C), whether 

global spillovers make sense (SDM rather than SDEM), and whether 

is W correctly specified.  

See SLX paper (Halleck Vega and Elhorst, JRS, 2015) and Bayesian 

comparison test of LeSage (2014, SDM vs. SDEM) for alternative 

approaches. 
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Common factors 

The dynamic spatial Durbin model with spatial specific and time-period specific 

effects reads as 

𝑌𝑡 = 𝜏𝑌𝑡−1 + 𝜌𝑊𝑌𝑡 + 𝜂𝑊𝑌𝑡−1 + 𝛼𝜄𝑁 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝜇 + 𝛼𝑡𝜄𝑁 + 𝑢𝑡. 

where 𝜇 = (𝜇1, … , 𝜇𝑁)𝑇. The spatial and time-period specific effects may be treated as 

fixed effects or as random effects. In the fixed effects model, a dummy variable is 

introduced for each spatial unit and for each time period (except one to avoid perfect 

multicollinearity), while in the random effects model, 𝜇𝑖 and 𝛼𝑡 are treated as random 

variables that are independently and identically distributed with zero mean and variance 

𝜎𝜇
2 and 𝜎𝛼

2, respectively. Furthermore, it is assumed that the random variables 𝜇𝑖, 𝛼𝑡, 

and 𝜀𝑡 are independent of each other.  
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𝑌𝑡 = 𝝉𝒀𝒕−𝟏 + 𝝆𝑾𝒀𝒕 + 𝜼𝑾𝒀𝒕−𝟏 + 𝑋𝑡𝛽 + 𝑾𝑿𝒕𝜽 + ∑ 𝜞𝒓
𝑻𝒇𝒓𝒕𝒓 + 𝑢𝑡,   𝑢𝑡 = 𝝀𝑾𝒖𝒕 + 𝜀𝑡 

Option 1 for ∑ 𝜞𝒓
𝑻𝒇𝒓𝒕𝒓 . 

If two factors are considered, 𝑓1𝑡 = (1, … ,1)𝑇 and 𝑓2𝑡 = (𝛼1, … , 𝛼𝑇)𝑇, and the 

parameter restrictions 𝛤1
𝑇 = (𝜇1, … , 𝜇𝑁) and 𝛤2

𝑇 = (1, … ,1) are imposed, the dynamic 

spatial Durbin model is obtained with Spatial and time-period fixed effects = two 

common factors.  

 

Formally, the spatial fixed effects represent one common factor (𝑓1𝑡) which is constant 

over time but with heterogenous coefficients (𝛤1). The time-period fixed effects 

represent another common factor of length T (𝑓2𝑡) which changes over time but which 

has homogenous coefficients (𝛤2). The total number of common factor parameters to 

be estimated in this setting amounts to N+T-1.  
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Demeaning variables by time dummies 

𝑦𝑖𝑡 ≔ 𝑦𝑖𝑡 − 𝑦̅.𝑡 (expression for individual observations) 

 

In vector notation 

𝑌𝑡 ≔ 𝑌𝑡 − [

1

𝑁
⋯

1

𝑁

⋮ ⋱ ⋮
1

𝑁
⋯

1

𝑁

] [

𝑦1𝑡

⋮
𝑦𝑁𝑡

],    and the same for Yt-1 and all X-variables. 

Conclusion: Including time dummies as a common factor has the effect that all 

variables are demeaned, i.e., are taken in deviation of their corresponding cross-

sectional averages with a W matrix in which all elements (including the diagonal 

elements) are 1/N. These demeaned variables, including 𝑌𝑡, may be treated as being 

exogenous provided that N goes to infinity, based on assumption 5 of Pesaran (2006). 

If time dummies are not included, ρ of 𝑾𝒀𝒕 will be overestimated.  
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Option 2: Keep the cross-sectional fixed effects, but replace the time dummies by 
cross-sectional averages (CSAs): 𝑌̅𝑡 = 1

𝑁
∑ 𝑌𝑖𝑡

𝑁
𝑖=1 , 𝑌̅𝑡−1 = 1

𝑁
∑ 𝑌𝑖𝑡−1

𝑁
𝑖=1 , and 𝑋̅𝑘𝑡 =

1

𝑁
∑ 𝑋𝑖𝑘𝑡

𝑁
𝑖=1  (k=1,..,K).   

 
Objection to time period fixed effects: each time dummy has the same 
homogeneous impact on all observations in period t, while it is likely that, for 
example, business cycle effects hit one unit harder than another unit. Total number 
of common factor parameters to be estimated when accounting for heterogeneity 
by CSAs increases to N+(2+K)*N.  
 
Since the numbers of parameters to be estimated increases rapidly with the number 
of common factors, most empirical studies try to keep the number of cross-sectional 
averages to a minimum. Often controlling for 𝑌̅𝑡 and 𝑌̅𝑡−1 only already effectively 
filters out the common time trends in the data (Cicarelli and Elhorst, 2018).  
 
Pesaran (2006, assumption 5 and remark 3): CSAs may be treated as exogenous 
explanatory variables since the contribution of each unit to the CSAs at a particular 
point in time goes to zero if N goes to infinity. 
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Link with cyclical sensitivity literature 
 

Thirlwall (1966) and Brechling (1967) demonstrate that regional unemployment rates 
tend to move in tandem with the national unemployment rate, but within the common 
rises and falls over time, the extent to which a region’s rate responds to changes in the 
national rate can be quite heterogeneous.  

 
This implies that heterogeneity is considered in both the old cyclical sensitivity 
literature and in the modern CSA literature and thus that common factors can be 
embedded in the economic-theoretical literature on cyclical sensitivity. 
 
I use Matlab routines to estimate models with CF, but I will give an example on slide 
40 how to use the xlsme command in Stata (Belotti et al. 2017) if you want to add cross-
sectional averages. 
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Option 3: Principal components, in which case the Γ parameters represent the factor 

loadings of the principal components. 

Shi and Lee (2017): Develop QML estimator for the dynamic GNS model with CF 

specified as principal components. This estimator does not require any specification 

of the distribution function of the disturbance term (explains the Q in QML). The 

coefficients estimates are bias-corrected for the Nickell bias and the impact of this 

bias on the other coefficients in the equation.  

For this purpose, a Matlab routine called SFactors has been developed, which the first 

author (Shi) made available at his web site www.w-shi.net. I extended this with the 

calculation of R2 and the log-likelihood function value and posted this at spatial-

panels.com. 

A potential disadvantage of principal components is that they are often difficult to 

interpret, especially if they are compared with cross-sectional averages. 

Every principal component requires the estimation of 2N additional parameters.  

  

http://www.w-shi.net/
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S  

The command in Stata running a dynamic spatial panel data model with spatial fixed effects and common factor 𝑌̅𝑡 

reads as: xsmle Y X 𝑌̅1𝑡 … 𝑌̅𝑁𝑡 wmat(W) model(sdm) durbin(X) dlag(3) fe type(ind) effects nsim(1000) 

The option type(ind) controls for spatial fixed effects and the variable list 𝑌̅1𝑡 … 𝑌̅𝑁𝑡 controls for the cross-sectional 

average of the depedent variable with N unit-specific coefficients. Time dummies should not be included to avoid (near) 

perfect multicollinearity. The data structure to read in the cross-sectional averages takes the following form: 

Unit Time Unit 

1 

Unit 

2 

… Unit 

N 

1 1 𝑌̅1 0 … 0 

2 1 0 𝑌̅1 … 0 

⋮ ⋮ ⋮ ⋮  ⋮ 
N 1 0 0  𝑌̅1 

⋮ ⋮ ⋮ ⋮  ⋮ 
1 T 𝑌̅𝑇 0 … 0 

2 T 0 𝑌̅𝑇 … 0 

⋮ ⋮ ⋮ ⋮  ⋮ 
N T 0 0 … 𝑌̅𝑇 
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Testing for common factors 

Cross-sectional dependence test of Pesaran (2015) in Econometric Reviews 

The CD test uses the correlation coefficients between the time-series for each panel unit, which 

for N units results in N x (N-1) correlations between unit r and all other units, for r=1 to N-1. 

Denoting these estimated correlation coefficients between the time-series of two units r and j 

as 𝜌̂𝑟𝑗, the Pesaran (2015, eq.10) CD test is defined as CD =  √2𝑇 𝑁(𝑁 − 1)⁄ ∑ ∑ 𝜌̂𝑟𝑗
𝑁
𝑗=𝑟+1

𝑁−1
𝑟=1 , 

where T is the number of observations on each unit over the observation period. This test 

statistic has the limiting N(0,1) distribution as N and T go to infinity first. This implies that the 

critical values of this two-sided test are -1.96 and 1.96 at the five percent significance level.  

Two null hypotheses can be tested: H0: cross-sectional independence, H1: cross-sectional 

dependence (Theorem 2), H0: weak cross-sectional dependence (α<1/2), H1: strong cross-

sectional dependence (α>1/2) (Theorem 3).  
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Exponent α of Bailey et al. (2016) in Journal of Applied Econometrics 

To investigate the strength of the found cross-sectional dependence, one can compute 

the exponent α of Bailey et al. (2016). This statistic can take values on the interval (0,1] 

and measures the rate at which the variance of the cross-sectional averages tends to 

zero; 𝛼 ≤ 1/2 points to weak cross-sectional dependence only and 𝛼 = 1 to strong 

cross-sectional dependence. Values in between indicate moderate to strong cross-

sectional dependence and require additional research to discriminate between weak 

and strong cross-sectional dependence.  

 

Both the CD-test and the exponent α are available in Stata: xtcd2 and xtcse2 (see do-

file computer lab). 
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Testing for common-factors: CD-test and exponent α-estimator 

Elhorst, J.P., Gross, M., Tereanu, E. (2021) Cross-sectional dependence and spillovers 

in space and time: where spatial econometrics and Global VAR models meet. Journal 

of Economic Surveys 35(1):192-226  

Interplay between cross-section dependence, CF, weight structure and estimation 

Note: α can be estimated consistently only for 1/2 < 𝛼 ≤ 1. Use Pesaran’s CD test to find out 

whether α is smaller or greater than ½. 

Α 
Cross section 

dependence 
 Weight structure Estimation 

0<α<0.5 weak 
sparse: local, mutually 

dominant units ML/IV/GMM 

0.5<α<0.75 moderate still quite sparse 

0.75<α<1 quite strong Dense (GVAR literature) 

OLS sufficient 
1 strong 

CS averages or PC        

 (no weights involved) 
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Practical guide suggested by Elhorst, Gross and Tereanu (2021): 

1. Assess the degree of strong cross-sectional dependence in the raw data – 

Compute the CD-test of Pesaran (2004, 2015) and the corresponding exponent α of 

BHP (2016). A nonsignificant CD-test result or a significant CD-test result with a 

value of α significantly smaller than 3/4 indicates that the data are weakly dependent 

or moderately dependent. Then a spatial econometric model without CF suffices. By 

contrast, a significant CD-test and a value of α not significantly smaller than 1 

suggests the presence of CF. 

2. Assess the degree of cross-sectional dependence in the residuals from step 1. 

Apply the CD-test on the “de-factored” observations from step 1 in case a common 

factor model has been chosen. Failure to reject the null indicates possibly remaining 

weak cross-sectional dependence. The appropriate method would then be a common 

factor model with a sparse connectivity matrix W estimated by means of 

ML/IV/GMM. 

Raw data cigarette consumption: CD=176.145, α=1.004424. 
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Estimation results of cigarette demand using different model specifications 

Determinants (1) (2) (3) (4) (5) 

 Non-dynamic  

spatial Durbin model 

no fixed effects 

Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with fixed effects 

Dynamic spatial Durbin  

model with cross- 

sectional averages 

Dynamic  

spatial Durbin model 

with principal components 

Intercept   2.631                (15.82)     

Log(C)-1     0.865             (65.04)   0.812             (59.71)   0.873               (72.27) 

WLog(C)   0.337                (11.09)   0.264               (8.25)   0.076               (2.00)   0.069               (1.99)   0.001                 (0.02) 

WLog(C)-1   −0.015             (−0.29)   0.093               (2.55)   0.080                 (1.67) 

Log(P)  −1.251              (−21.80) −1.001          (−24.36) −0.266           (−13.19) −0.319          (−14.12) −0.245             (−11.22) 

Log(Y)   0.554                (14.96)   0.603             (10.27)   0.100                (4.16)   0.175               (5.10)   0.141                  (4.75) 

WLog(P)    0.780                (11.15)   0.093               (1.13)   0.170                (3.66)   0.304             (11.22)   0.260                  (6.75) 

WLog(Y) −0.444               (11.09) −0.314             (−3.93) −0.022              (−0.87) −0.172             (−4.93) −0.027                (−0.70) 

Werror     −0.013                 (−0.19) 

R2 0.435 0.902 0.977 0.914 0.977 

LogL 475.5 1691.4 2623.3 2699.1 3078.5 

CD-test 25.16 −2.28 0.29 −2.93 −3.08 

Notes: t-values in parentheses 
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Effects estimates of cigarette demand using different model specifications 

Determinants (1) (2) (3) (4) (5) 

 Non-dynamic  

spatial Durbin model 

no fixed effects 

Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with fixed effects 

Dynamic spatial Durbin  

model with cross- 

sectional averages 

Dynamic spatial 

Durbin model with 

principal components 

Short-term direct  

effect Log(P) 

    −0.262         

 

 (−11.48) 

 

−0.312             (−14.65) −0.246              (−10.44) 

Short-term indirect  

effect Log(P) 

    0.160                (3.49) 0.295                (11.39) 0.260                 (6.04) 

Short-term direct  

effect Log(Y) 

    0.099                 (3.36) 0.172                  (5.13) 0.143                   (4.90) 

Short-term indirect  

effect Log(Y) 

    −0.018              (−0.45) −0.169                (−4.96) −0.030                (−0.75) 

Long-term direct  

effect Log(P) 

−1.216        (−23.39) −1.013        (−24.73) −1.931              (−9.59) −1.634                (−1.74) −1.670              (−3.85) 

Long-term indirect  

effect Log(P) 

0.508                 (7.27) −0.220             (−2.26) 0.610               (0.98) 0.254                   (0.01) 2.498                   (0.27) 

Long-term direct  

effect Log(Y) 

0.530               (15.48) 0.594              (10.45) 0.770                (3.55) 0.899                   (1.51) 1.384                  (0.99) 

Long-term indirect  

effect Log(Y) 

−0.366              (−7.47) −0.197              (−2.15) 0.345               (0.48) −0.008                 (−0.00) 2.680                 (0.07) 

Notes: t-values in parentheses 

 



 47 

Empirical Results CF 

To find out which set of common factors is able to filter out common factors most 

effectively, the cross-sectional dependence (CD) test developed by Pesaran (2015) may 

be used. 

The conclusion from three empirical studies — Cicarelli and Elhorst (2018), Elhorst et 

al. (2020) and Elhorst (2021) — is that the best option (1, 2 or 3) to control for common 

time trends might differ from one empirical study to another. 

Recommendation for empirical researchers:  

-Always include WX variables to end up with flexible spillovers. 

-If WY is included, motivate it from an economic-theoretical point of view. 

-It is possible to estimate a dynamic GNS with principal components in Matlab, 

and a dynamic SDM with cross-sectional averages in Matlab or Stata. 
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Economic-theoretical underpinnings of 𝑾𝒀𝒕 

-Anselin (2006): Conceptualization of strategic interaction or a spatial reaction 

function, 𝑦𝑖 = 𝑅(𝑦_𝑖 , 𝑥𝑖), where 𝑦_𝑖 reflects decisions by other agents. See for 

strategic interaction among local governments (Wildasin, 1988; Besley and Case, 

1995; Brueckner, 2003, 2006; Allers and Elhorst, 2011). 

-Pinkse et al. (2002) and LeSage et al. (2017): When one petrol station decreases its 

price, geographically nearby service stations need to follow in order not to lose 

market share. 

-Hanson (2005): augmented market-potential function derived from Krugman’s 

model of economic geography, reflecting the impact of scale economies and 

transport costs, explaining wages.  

-Behrens et al. (2012): a quantity-based structural gravity equation system in which 

both trade flows and error terms are cross-sectionally correlated. 

-Blonigen et al (2007): foreign direct investments (FDI). 

-Xu and Lee (2019): SAR can be regarded as a model on the Nash equilibrium of a 

static complete information game with a linear-quadratic utility function. 
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Economic-theoretical underpinnings of 𝑾𝑿𝒕 variables 

LeSage and Pace (2009):  Several motivations, though mostly statistical. 

Ertur and Koch (2007): SD model of GDP per capita growth (initial income level, 

savings rate, population growth rate). 

Yesilyurt and Elhorst (2017): SD model of military expenditures as a ratio of GDP. 

Firmino Costa da Silva et al. (2017): dynamic SD and GNS model of a spatially 

augmented population growth model. 

Heijnen and Elhorst (2018): SD diffusion model of waste disposal taxes across 

municipalities. 

Xu and Lee (2019): game-theoretical model can be extended with 𝑾𝑿𝒕 variables. 
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Conclusion 

Dynamic spatial econometric models for spatial panels with common factors (CF) are 

the most advanced models currently available for empirical research.  

I encourage more scholars to work with these models (CF) in their empirical research.  

At the same time, I should warn you that these models are difficult model to work 

with since the estimation results produced by this model are often quite puzzling, 

especially in the beginning.  

These advanced models require extensive research experience in spatial 

econometrics and sufficient economic-theoretical knowledge of the problem at hand. 

Often the results are not immediately in line with initial expectations, but after 

thinking them over and debating them with other researchers, progress towards an 

acceptable model specification can be made step by step. 

 


